|
|
import os
|
|
|
import torch
|
|
|
import easyocr
|
|
|
import numpy as np
|
|
|
import gc
|
|
|
from transformers import AutoTokenizer, AutoModel, AutoProcessor, AutoModelForZeroShotImageClassification
|
|
|
import torch.nn.functional as F
|
|
|
from utils import build_transform
|
|
|
|
|
|
class ModelHandler:
|
|
|
def __init__(self):
|
|
|
self.device = torch.device("cpu")
|
|
|
self.transform = build_transform()
|
|
|
self.load_models()
|
|
|
|
|
|
def load_models(self):
|
|
|
|
|
|
try:
|
|
|
|
|
|
local_path = os.path.join("Models", "InternVL2_5-1B-MPO")
|
|
|
if os.path.exists(local_path):
|
|
|
internvl_model_path = local_path
|
|
|
print(f"Loading InternVL from local path: {internvl_model_path}")
|
|
|
else:
|
|
|
internvl_model_path = "OpenGVLab/InternVL2_5-1B-MPO"
|
|
|
print(f"Local model not found. Downloading InternVL from HF Hub: {internvl_model_path}")
|
|
|
|
|
|
self.model_int = AutoModel.from_pretrained(
|
|
|
internvl_model_path,
|
|
|
torch_dtype=torch.bfloat16,
|
|
|
low_cpu_mem_usage=True,
|
|
|
trust_remote_code=True
|
|
|
).eval()
|
|
|
|
|
|
for module in self.model_int.modules():
|
|
|
if isinstance(module, torch.nn.Dropout):
|
|
|
module.p = 0
|
|
|
|
|
|
self.tokenizer_int = AutoTokenizer.from_pretrained(internvl_model_path, trust_remote_code=True)
|
|
|
print("\nInternVL model and tokenizer loaded successfully.")
|
|
|
except Exception as e:
|
|
|
print(f"\nError loading InternVL model or tokenizer: {e}")
|
|
|
self.model_int = None
|
|
|
self.tokenizer_int = None
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
self.reader = easyocr.Reader(['en', 'hi'], gpu=False)
|
|
|
print("\nEasyOCR reader initialized successfully.")
|
|
|
except Exception as e:
|
|
|
print(f"\nError initializing EasyOCR reader: {e}")
|
|
|
self.reader = None
|
|
|
|
|
|
|
|
|
try:
|
|
|
local_path = os.path.join("Models", "clip-vit-base-patch32")
|
|
|
if os.path.exists(local_path):
|
|
|
clip_model_path = local_path
|
|
|
print(f"Loading CLIP from local path: {clip_model_path}")
|
|
|
else:
|
|
|
clip_model_path = "openai/clip-vit-base-patch32"
|
|
|
print(f"Local model not found. Downloading CLIP from HF Hub: {clip_model_path}")
|
|
|
|
|
|
self.processor_clip = AutoProcessor.from_pretrained(clip_model_path)
|
|
|
self.model_clip = AutoModelForZeroShotImageClassification.from_pretrained(clip_model_path).to(self.device)
|
|
|
print("\nCLIP model and processor loaded successfully.")
|
|
|
except Exception as e:
|
|
|
print(f"\nError loading CLIP model or processor: {e}")
|
|
|
self.model_clip = None
|
|
|
self.processor_clip = None
|
|
|
|
|
|
def easyocr_ocr(self, image):
|
|
|
if not self.reader:
|
|
|
return ""
|
|
|
image_np = np.array(image)
|
|
|
results = self.reader.readtext(image_np, detail=1)
|
|
|
|
|
|
del image_np
|
|
|
gc.collect()
|
|
|
|
|
|
if not results:
|
|
|
return ""
|
|
|
|
|
|
sorted_results = sorted(results, key=lambda x: (x[0][0][1], x[0][0][0]))
|
|
|
ordered_text = " ".join([res[1] for res in sorted_results]).strip()
|
|
|
return ordered_text
|
|
|
|
|
|
def intern(self, image, prompt, max_tokens):
|
|
|
if not self.model_int or not self.tokenizer_int:
|
|
|
return ""
|
|
|
|
|
|
pixel_values = self.transform(image).unsqueeze(0).to(self.device).to(torch.bfloat16)
|
|
|
with torch.no_grad():
|
|
|
response, _ = self.model_int.chat(
|
|
|
self.tokenizer_int,
|
|
|
pixel_values,
|
|
|
prompt,
|
|
|
generation_config={
|
|
|
"max_new_tokens": max_tokens,
|
|
|
"do_sample": False,
|
|
|
"num_beams": 1,
|
|
|
"temperature": 1.0,
|
|
|
"top_p": 1.0,
|
|
|
"repetition_penalty": 1.0,
|
|
|
"length_penalty": 1.0,
|
|
|
"pad_token_id": self.tokenizer_int.pad_token_id
|
|
|
},
|
|
|
history=None,
|
|
|
return_history=True
|
|
|
)
|
|
|
|
|
|
del pixel_values
|
|
|
gc.collect()
|
|
|
return response
|
|
|
|
|
|
def clip(self, image, labels):
|
|
|
if not self.model_clip or not self.processor_clip:
|
|
|
return None
|
|
|
|
|
|
processed = self.processor_clip(
|
|
|
text=labels,
|
|
|
images=image,
|
|
|
padding=True,
|
|
|
return_tensors="pt"
|
|
|
).to(self.device)
|
|
|
|
|
|
del image, labels
|
|
|
gc.collect()
|
|
|
return processed
|
|
|
|
|
|
def get_clip_probs(self, image, labels):
|
|
|
inputs = self.clip(image, labels)
|
|
|
if inputs is None:
|
|
|
return None
|
|
|
|
|
|
with torch.no_grad():
|
|
|
outputs = self.model_clip(**inputs)
|
|
|
|
|
|
logits_per_image = outputs.logits_per_image
|
|
|
probs = F.softmax(logits_per_image, dim=1)
|
|
|
|
|
|
del inputs, outputs, logits_per_image
|
|
|
gc.collect()
|
|
|
|
|
|
return probs
|
|
|
|
|
|
|
|
|
model_handler = ModelHandler()
|
|
|
|