File size: 4,837 Bytes
d790e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from backend.modules import visual_checks, text_checks, content_checks
import logging
import random
import time

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# ==========================================
# REAL CLASSIFICATION LOGIC
# ==========================================
def classify_real(image_path):
    """Perform complete classification with detailed results using AI models."""
    # Components to check
    components = [
        visual_checks.image_quality,
        visual_checks.ribbon,
        text_checks.tagline,
        text_checks.tooMuchText,
        content_checks.theme,
        content_checks.body,
        text_checks.cta,
        text_checks.tnc,
        visual_checks.gnc
    ]

    # Collect all results
    all_results = {}
    for component in components:
        try:
            results = component(image_path)
            all_results.update(results)
        except Exception as e:
            logger.error(f"Error in component {component.__name__}: {e}")
            pass

    # Calculate final classification
    final_classification = 0
    for result in all_results.values():
        if isinstance(result, int):
            if result == 1:
                final_classification = 1
                break
        elif isinstance(result, str):
            if result.startswith('1'):
                final_classification = 1
                break

    # Determine Pass or Fail
    classification_result = "Fail" if final_classification == 1 else "Pass"

    # Prepare the table data
    table_data = []
    labels = [
        "Bad Image Quality", "No Ribbon", "Empty/Illegible/Black Tagline", "Multiple Taglines",
        "Incomplete Tagline", "Hyperlink", "Price Tag", "Excessive Emojis", "Too Much Text",
        "Inappropriate Content", "Religious Content", "High Risk Content",
        "Illegal Content", "Competitor References", "Bad CTA", "Terms & Conditions",
        "Visual Gesture or Icon"
    ]

    # Collect labels responsible for failure
    failure_labels = []
    for label in labels:
        result = all_results.get(label, 0)
        
        is_fail = False
        if isinstance(result, int) and result == 1:
            is_fail = True
        elif isinstance(result, str) and result.startswith('1'):
            is_fail = True
            
        if is_fail:
            failure_labels.append(label)

        table_data.append([label, result])

    # Return the final classification, result table data, and failure labels (if any)
    return classification_result, table_data, failure_labels

# ==========================================
# DUMMY CLASSIFICATION FOR TESTING
# ==========================================
def classify_dummy(image_path):
    """
    A dummy classification function that returns random results.
    Useful for testing the frontend without running expensive models.
    """
    # Simulate processing time
    time.sleep(1) 
    
    all_results = {
        "Bad Image Quality": 1,
        "No Ribbon": random.choice([0, 1]),
        "Empty/Illegible/Black Tagline": 1,
        "Multiple Taglines": 1,
        "Incomplete Tagline": 1,
        "Hyperlink": 1,
        "Price Tag": 1,
        "Excessive Emojis": 1,
        "Too Much Text": 1,
        "Inappropriate Content": 1,
        "Religious Content": 1,
        "High Risk Content": 1,
        "Illegal Content": 1,
        "Competitor References": 0,
        "Bad CTA": 0,
        "Terms & Conditions": 0,
        "Visual Gesture or Icon": 1
    }
    
    # Determine Pass/Fail based on results
    final_classification = 0
    for result in all_results.values():
        if isinstance(result, int) and result == 1:
            final_classification = 1
            break
        elif isinstance(result, str) and result.startswith('1'):
            final_classification = 1
            break
            
    classification_result = "Fail" if final_classification == 1 else "Pass"
    
    # Collect failure labels and prepare table data
    labels = list(all_results.keys())
    failure_labels = []
    table_data = []
    
    for label in labels:
        result = all_results[label]
        is_fail = False
        if isinstance(result, int) and result == 1:
            is_fail = True
        elif isinstance(result, str) and result.startswith('1'):
            is_fail = True
            
        if is_fail:
            failure_labels.append(label)
            
        table_data.append([label, result])
        
    return classification_result, table_data, failure_labels

# ==========================================
# TOGGLE CLASSIFIER HERE
# ==========================================
# Uncomment the one you want to use

# classify = classify_dummy
classify = classify_real