Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,46 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from peft import PeftModel, LoraConfig
|
| 6 |
import os
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def get_lora_sd_pipeline(
|
| 9 |
ckpt_dir='./lora_logos',
|
| 10 |
base_model_name_or_path=None,
|
| 11 |
dtype=torch.float16,
|
| 12 |
-
adapter_name="default"
|
|
|
|
| 13 |
):
|
| 14 |
|
| 15 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
|
@@ -22,7 +53,12 @@ def get_lora_sd_pipeline(
|
|
| 22 |
if base_model_name_or_path is None:
|
| 23 |
raise ValueError("Please specify the base model name or path")
|
| 24 |
|
| 25 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
before_params = pipe.unet.parameters()
|
| 27 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
| 28 |
pipe.unet.set_adapter(adapter_name)
|
|
@@ -35,7 +71,7 @@ def get_lora_sd_pipeline(
|
|
| 35 |
if dtype in (torch.float16, torch.bfloat16):
|
| 36 |
pipe.unet.half()
|
| 37 |
pipe.text_encoder.half()
|
| 38 |
-
|
| 39 |
return pipe
|
| 40 |
|
| 41 |
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
|
|
@@ -52,14 +88,36 @@ def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
|
| 52 |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
| 53 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)
|
| 60 |
|
| 61 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 62 |
-
MAX_IMAGE_SIZE = 1024
|
| 63 |
|
| 64 |
def infer(
|
| 65 |
prompt,
|
|
@@ -71,24 +129,59 @@ def infer(
|
|
| 71 |
seed=42,
|
| 72 |
guidance_scale=7.0,
|
| 73 |
lora_scale=0.5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
progress=gr.Progress(track_tqdm=True)
|
| 75 |
):
|
| 76 |
|
| 77 |
generator = torch.Generator(device).manual_seed(seed)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
| 90 |
print(f"LoRA scale applied: {lora_scale}")
|
| 91 |
pipe.fuse_lora(lora_scale=lora_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
params = {
|
| 94 |
'prompt_embeds': prompt_embeds,
|
|
@@ -99,6 +192,23 @@ def infer(
|
|
| 99 |
'height': height,
|
| 100 |
'generator': generator,
|
| 101 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
return pipe(**params).images[0]
|
| 104 |
|
|
@@ -169,6 +279,36 @@ with gr.Blocks(css=css) as demo:
|
|
| 169 |
value=20,
|
| 170 |
)
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
with gr.Accordion("Optional Settings", open=False):
|
| 173 |
with gr.Row():
|
| 174 |
width = gr.Slider(
|
|
@@ -204,6 +344,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 204 |
seed,
|
| 205 |
guidance_scale,
|
| 206 |
lora_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
],
|
| 208 |
outputs=[result],
|
| 209 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
from diffusers import (
|
| 5 |
+
StableDiffusionPipeline,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
ControlNetModel
|
| 8 |
+
)
|
| 9 |
from peft import PeftModel, LoraConfig
|
| 10 |
import os
|
| 11 |
|
| 12 |
+
|
| 13 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
+
MAX_IMAGE_SIZE = 1024
|
| 15 |
+
IP_ADAPTER = 'h94/IP-Adapter'
|
| 16 |
+
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"
|
| 17 |
+
|
| 18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
model_id_default = "CompVis/stable-diffusion-v1-4"
|
| 20 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 21 |
+
|
| 22 |
+
hed = None
|
| 23 |
+
dict_controlnet = {
|
| 24 |
+
"edge_detection": "lllyasviel/sd-controlnet-canny",
|
| 25 |
+
# "pose_estimation": "lllyasviel/sd-controlnet-openpose",
|
| 26 |
+
# "depth_map": "lllyasviel/sd-controlnet-depth",
|
| 27 |
+
"scribble": "lllyasviel/sd-controlnet-scribble",
|
| 28 |
+
# "MLSD": "lllyasviel/sd-controlnet-mlsd"
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 32 |
+
dict_controlnet["edge_detection"],
|
| 33 |
+
cache_dir="./models_cache",
|
| 34 |
+
torch_dtype=torch_dtype,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
def get_lora_sd_pipeline(
|
| 39 |
ckpt_dir='./lora_logos',
|
| 40 |
base_model_name_or_path=None,
|
| 41 |
dtype=torch.float16,
|
| 42 |
+
adapter_name="default",
|
| 43 |
+
controlnet
|
| 44 |
):
|
| 45 |
|
| 46 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
|
|
|
| 53 |
if base_model_name_or_path is None:
|
| 54 |
raise ValueError("Please specify the base model name or path")
|
| 55 |
|
| 56 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 57 |
+
base_model_name_or_path,
|
| 58 |
+
torch_dtype=dtype,
|
| 59 |
+
controlnet=controlnet,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
before_params = pipe.unet.parameters()
|
| 63 |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
| 64 |
pipe.unet.set_adapter(adapter_name)
|
|
|
|
| 71 |
if dtype in (torch.float16, torch.bfloat16):
|
| 72 |
pipe.unet.half()
|
| 73 |
pipe.text_encoder.half()
|
| 74 |
+
|
| 75 |
return pipe
|
| 76 |
|
| 77 |
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
|
|
|
|
| 88 |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
| 89 |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
| 90 |
|
| 91 |
+
def map_edge_detection(image_path: str) -> Image:
|
| 92 |
+
source_img = load_image(image_path).convert('RGB')
|
| 93 |
+
edges = cv.Canny(np.array(source_img), 80, 160)
|
| 94 |
+
edges = np.repeat(edges[:, :, None], 3, axis=2)
|
| 95 |
+
final_image = Image.fromarray(edges)
|
| 96 |
+
return final_image
|
| 97 |
+
|
| 98 |
+
def map_scribble(image_path: str) -> Image:
|
| 99 |
+
global hed
|
| 100 |
+
if not hed:
|
| 101 |
+
hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
| 102 |
+
|
| 103 |
+
image = load_image(image_path).convert('RGB')
|
| 104 |
+
scribble_image = hed(image)
|
| 105 |
+
image_np = np.array(scribble_image)
|
| 106 |
+
image_np = cv.medianBlur(image_np, 3)
|
| 107 |
+
image = cv.convertScaleAbs(image_np, alpha=1.5, beta=0)
|
| 108 |
+
final_image = Image.fromarray(image)
|
| 109 |
+
return final_image
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
pipe = get_lora_sd_pipeline(
|
| 114 |
+
ckpt_dir='./lora_logos',
|
| 115 |
+
base_model_name_or_path=model_id_default,
|
| 116 |
+
dtype=torch_dtype,
|
| 117 |
+
controlnet=controlnet
|
| 118 |
+
).to(device)
|
| 119 |
|
|
|
|
| 120 |
|
|
|
|
|
|
|
| 121 |
|
| 122 |
def infer(
|
| 123 |
prompt,
|
|
|
|
| 129 |
seed=42,
|
| 130 |
guidance_scale=7.0,
|
| 131 |
lora_scale=0.5,
|
| 132 |
+
cn_enable=False,
|
| 133 |
+
cn_strength=0.0,
|
| 134 |
+
cn_mode='edge_detection',
|
| 135 |
+
cn_image=None,
|
| 136 |
+
ip_enable=False,
|
| 137 |
+
ip_scale=0.5,
|
| 138 |
+
ip_image=None,
|
| 139 |
progress=gr.Progress(track_tqdm=True)
|
| 140 |
):
|
| 141 |
|
| 142 |
generator = torch.Generator(device).manual_seed(seed)
|
| 143 |
|
| 144 |
+
global pipe
|
| 145 |
+
global controlnet
|
| 146 |
+
|
| 147 |
+
controlnet_changed = False
|
| 148 |
+
|
| 149 |
+
if cn_enable:
|
| 150 |
+
if dict_controlnet[cn_mode] != pipe.controlnet._name_or_path:
|
| 151 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 152 |
+
dict_controlnet[cn_mode],
|
| 153 |
+
cache_dir="./models_cache",
|
| 154 |
+
torch_dtype=torch_dtype
|
| 155 |
+
)
|
| 156 |
+
controlnet_changed = True
|
| 157 |
else:
|
| 158 |
+
cn_strength = 0.0 # отключаем контролнет принудительно
|
| 159 |
+
|
| 160 |
+
if model_id != pipe._name_or_path:
|
| 161 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 162 |
+
model_id,
|
| 163 |
+
torch_dtype=torch_dtype,
|
| 164 |
+
controlnet=controlnet,
|
| 165 |
+
controlnet_conditioning_scale=cn_strength,
|
| 166 |
+
).to(device)
|
| 167 |
+
elif (model_id == pipe._name_or_path) and controlnet_changed:
|
| 168 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 169 |
+
model_id,
|
| 170 |
+
torch_dtype=torch_dtype,
|
| 171 |
+
controlnet=controlnet,
|
| 172 |
+
controlnet_conditioning_scale=cn_strength,
|
| 173 |
+
).to(device)
|
| 174 |
+
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
| 175 |
+
print(f"LoRA scale applied: {lora_scale}")
|
| 176 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
| 177 |
+
elif (model_id == pipe._name_or_path) and not controlnet_changed:
|
| 178 |
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
| 179 |
print(f"LoRA scale applied: {lora_scale}")
|
| 180 |
pipe.fuse_lora(lora_scale=lora_scale)
|
| 181 |
+
|
| 182 |
+
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
| 183 |
+
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
| 184 |
+
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
| 185 |
|
| 186 |
params = {
|
| 187 |
'prompt_embeds': prompt_embeds,
|
|
|
|
| 192 |
'height': height,
|
| 193 |
'generator': generator,
|
| 194 |
}
|
| 195 |
+
|
| 196 |
+
if cn_enable:
|
| 197 |
+
params['controlnet_conditioning_scale'] = cn_strength
|
| 198 |
+
if cn_mode == 'edge_detection':
|
| 199 |
+
control_image = map_edge_detection(cn_image)
|
| 200 |
+
elif cn_mode == 'scribble':
|
| 201 |
+
control_image = map_scribble(cn_image)
|
| 202 |
+
params['control_image'] = control_image
|
| 203 |
+
|
| 204 |
+
if ip_enable:
|
| 205 |
+
pipe.load_ip_adapter(
|
| 206 |
+
IP_ADAPTER,
|
| 207 |
+
subfolder="models",
|
| 208 |
+
weight_name=IP_ADAPTER_WEIGHT_NAME,
|
| 209 |
+
)
|
| 210 |
+
params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
|
| 211 |
+
pipe.ip_scale(0.6)
|
| 212 |
|
| 213 |
return pipe(**params).images[0]
|
| 214 |
|
|
|
|
| 279 |
value=20,
|
| 280 |
)
|
| 281 |
|
| 282 |
+
# Секция Control Net
|
| 283 |
+
cn_enable = gr.Checkbox(label="Enable ControlNet")
|
| 284 |
+
with gr.Column(visible=False) as cn_options:
|
| 285 |
+
with gr.Row():
|
| 286 |
+
cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
|
| 287 |
+
cn_mode = gr.Dropdown(
|
| 288 |
+
choices=["edge_detection", "scribble"],
|
| 289 |
+
label="Work regime",
|
| 290 |
+
interactive=True,
|
| 291 |
+
)
|
| 292 |
+
cn_image = gr.Image(type="filepath", label="Control image")
|
| 293 |
+
|
| 294 |
+
cn_enable.change(
|
| 295 |
+
lambda x: gr.update(visible=x),
|
| 296 |
+
inputs=cn_enable,
|
| 297 |
+
outputs=cn_options
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Секция IP-Adapter
|
| 301 |
+
ip_enable = gr.Checkbox(label="Enable IP-Adapter")
|
| 302 |
+
with gr.Column(visible=False) as ip_options:
|
| 303 |
+
ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
|
| 304 |
+
ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)
|
| 305 |
+
|
| 306 |
+
ip_enable.change(
|
| 307 |
+
lambda x: gr.update(visible=x),
|
| 308 |
+
inputs=ip_enable,
|
| 309 |
+
outputs=ip_options
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
with gr.Accordion("Optional Settings", open=False):
|
| 313 |
with gr.Row():
|
| 314 |
width = gr.Slider(
|
|
|
|
| 344 |
seed,
|
| 345 |
guidance_scale,
|
| 346 |
lora_scale,
|
| 347 |
+
cn_enable,
|
| 348 |
+
cn_strength,
|
| 349 |
+
cn_mode,
|
| 350 |
+
cn_image,
|
| 351 |
+
ip_enable,
|
| 352 |
+
ip_scale,
|
| 353 |
+
ip_image
|
| 354 |
],
|
| 355 |
outputs=[result],
|
| 356 |
)
|