Spaces:
Sleeping
Sleeping
Alessio Cocchieri
commited on
Commit
·
9ff961b
1
Parent(s):
aedda6d
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import json
|
| 4 |
+
from typing import Dict, List, Tuple, Any
|
| 5 |
+
|
| 6 |
+
from zshot import PipelineConfig
|
| 7 |
+
from zshot.linker import LinkerSMXM
|
| 8 |
+
from zshot.utils.data_models import Entity
|
| 9 |
+
|
| 10 |
+
from spacy.cli import download
|
| 11 |
+
download("en_core_web_sm")
|
| 12 |
+
|
| 13 |
+
# Function to load the NER model
|
| 14 |
+
def load_model(entity_data):
|
| 15 |
+
entities = [
|
| 16 |
+
Entity(
|
| 17 |
+
name=entity["name"],
|
| 18 |
+
description=entity["description"],
|
| 19 |
+
vocabulary=entity.get("vocabulary")
|
| 20 |
+
) for entity in entity_data
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
nlp = spacy.blank("en")
|
| 24 |
+
nlp_config = PipelineConfig(
|
| 25 |
+
linker=LinkerSMXM(model_name="disi-unibo-nlp/openbioner-base"),
|
| 26 |
+
entities=entities,
|
| 27 |
+
device='cpu' # Change to 'cpu' if GPU not available
|
| 28 |
+
)
|
| 29 |
+
nlp.add_pipe("zshot", config=nlp_config, last=True)
|
| 30 |
+
|
| 31 |
+
return nlp
|
| 32 |
+
|
| 33 |
+
# Default entities - focusing on BACTERIUM example
|
| 34 |
+
default_entities = [
|
| 35 |
+
{
|
| 36 |
+
"name": "BACTERIUM",
|
| 37 |
+
"description": "A bacterium refers to a type of microorganism that can exist as a single cell and may cause infections or play a role in various biological processes. Examples include species like Streptococcus pneumoniae and Streptomyces ahygroscopicus.",
|
| 38 |
+
}
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
# Initialize model with default entities
|
| 42 |
+
nlp = load_model(default_entities)
|
| 43 |
+
|
| 44 |
+
# Function to create HTML visualization of entities
|
| 45 |
+
def get_entity_html(doc) -> str:
|
| 46 |
+
colors = {
|
| 47 |
+
"BACTERIUM": "#8dd3c7",
|
| 48 |
+
"CHEMICAL": "#fb8072",
|
| 49 |
+
"DISEASE": "#80b1d3",
|
| 50 |
+
"GENE": "#fdb462",
|
| 51 |
+
"SPECIES": "#b3de69"
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
html_parts = []
|
| 55 |
+
last_idx = 0
|
| 56 |
+
|
| 57 |
+
# Display text with highlighted entities
|
| 58 |
+
for ent in doc.ents:
|
| 59 |
+
# Add text before the entity
|
| 60 |
+
html_parts.append(doc.text[last_idx:ent.start_char])
|
| 61 |
+
|
| 62 |
+
# Add the highlighted entity
|
| 63 |
+
color = colors.get(ent.label_, "#ddd")
|
| 64 |
+
html_parts.append(
|
| 65 |
+
f'<span style="background-color: {color}; padding: 0.2em 0.3em; '
|
| 66 |
+
f'border-radius: 0.35em; margin: 0 0.1em; font-weight: bold; color: #000;">'
|
| 67 |
+
f'{doc.text[ent.start_char:ent.end_char]}'
|
| 68 |
+
f'<span style="font-size: 0.8em; font-weight: bold; margin-left: 0.5em">{ent.label_}</span>'
|
| 69 |
+
f'</span>'
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Update the last index
|
| 73 |
+
last_idx = ent.end_char
|
| 74 |
+
|
| 75 |
+
# Add any remaining text
|
| 76 |
+
html_parts.append(doc.text[last_idx:])
|
| 77 |
+
|
| 78 |
+
# Wrap the result in a div with dark theme styling
|
| 79 |
+
return f'<div style="line-height: 1.5; padding: 10px; background: #222; color: #fff; border-radius: 5px;">{"".join(html_parts)}</div>'
|
| 80 |
+
|
| 81 |
+
# Function to get entity details including spans
|
| 82 |
+
def get_entity_details(doc) -> List[Dict[str, Any]]:
|
| 83 |
+
entity_details = []
|
| 84 |
+
for ent in doc.ents:
|
| 85 |
+
entity_details.append({
|
| 86 |
+
"text": ent.text,
|
| 87 |
+
"type": ent.label_,
|
| 88 |
+
"start": ent.start_char,
|
| 89 |
+
"end": ent.end_char
|
| 90 |
+
})
|
| 91 |
+
return entity_details
|
| 92 |
+
|
| 93 |
+
# Main processing function
|
| 94 |
+
def process_text(text: str, entities_json: str) -> Tuple[str, List[Dict[str, Any]]]:
|
| 95 |
+
global nlp
|
| 96 |
+
|
| 97 |
+
# Update model if entities have changed
|
| 98 |
+
try:
|
| 99 |
+
entities = json.loads(entities_json)
|
| 100 |
+
nlp = load_model(entities)
|
| 101 |
+
except json.JSONDecodeError:
|
| 102 |
+
return "Error: Invalid JSON in entity configuration", []
|
| 103 |
+
|
| 104 |
+
# Process the text with the NER model
|
| 105 |
+
doc = nlp(text)
|
| 106 |
+
|
| 107 |
+
# Generate visualization HTML
|
| 108 |
+
html_output = get_entity_html(doc)
|
| 109 |
+
|
| 110 |
+
# Get detailed entity information including spans
|
| 111 |
+
entity_details = get_entity_details(doc)
|
| 112 |
+
|
| 113 |
+
return html_output, entity_details
|
| 114 |
+
|
| 115 |
+
# Set theme to dark
|
| 116 |
+
theme = gr.themes.Soft(
|
| 117 |
+
primary_hue="blue",
|
| 118 |
+
secondary_hue="slate",
|
| 119 |
+
neutral_hue="slate",
|
| 120 |
+
text_size=gr.themes.sizes.text_md,
|
| 121 |
+
).set(
|
| 122 |
+
body_background_fill="#1a1a1a",
|
| 123 |
+
background_fill_primary="#222",
|
| 124 |
+
background_fill_secondary="#333",
|
| 125 |
+
border_color_primary="#444",
|
| 126 |
+
block_background_fill="#222",
|
| 127 |
+
block_label_background_fill="#333",
|
| 128 |
+
block_label_text_color="#fff",
|
| 129 |
+
block_title_text_color="#fff",
|
| 130 |
+
body_text_color="#fff",
|
| 131 |
+
button_primary_background_fill="#2563eb",
|
| 132 |
+
button_primary_text_color="#fff",
|
| 133 |
+
input_background_fill="#333",
|
| 134 |
+
input_border_color="#555",
|
| 135 |
+
input_placeholder_color="#888",
|
| 136 |
+
panel_background_fill="#222",
|
| 137 |
+
slider_color="#2563eb",
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Create Gradio interface with dark theme
|
| 141 |
+
with gr.Blocks(title="Named Entity Recognition", theme=theme) as demo:
|
| 142 |
+
gr.Markdown("# OpenBioNER - Demo")
|
| 143 |
+
|
| 144 |
+
# First row: Entity Definitions
|
| 145 |
+
with gr.Row():
|
| 146 |
+
entities_input = gr.Code(
|
| 147 |
+
label="Entity Definitions (JSON)",
|
| 148 |
+
language="json",
|
| 149 |
+
value=json.dumps(default_entities, indent=2),
|
| 150 |
+
lines=6
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Second row: Input text and examples side by side
|
| 154 |
+
with gr.Row():
|
| 155 |
+
# Left side - Input text
|
| 156 |
+
with gr.Column():
|
| 157 |
+
text_input = gr.Textbox(
|
| 158 |
+
label="Text to analyze",
|
| 159 |
+
placeholder="Enter text to analyze...",
|
| 160 |
+
value="Impact of cofactor - binding loop mutations on thermotolerance and activity of E. coli transketolase",
|
| 161 |
+
lines=3
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
analyze_btn = gr.Button("Analyze Text", variant="primary")
|
| 165 |
+
|
| 166 |
+
# Right side - Example texts
|
| 167 |
+
with gr.Column():
|
| 168 |
+
gr.Markdown("### Quick Examples")
|
| 169 |
+
example1_btn = gr.Button("E. coli research")
|
| 170 |
+
example2_btn = gr.Button("Bacterial infection case")
|
| 171 |
+
example3_btn = gr.Button("Multiple bacterial species")
|
| 172 |
+
|
| 173 |
+
# Third row: Output visualization and spans side by side
|
| 174 |
+
with gr.Row():
|
| 175 |
+
# Left side - Highlighted text output
|
| 176 |
+
with gr.Column():
|
| 177 |
+
gr.Markdown("### Recognized Entities")
|
| 178 |
+
result_html = gr.HTML()
|
| 179 |
+
|
| 180 |
+
# Right side - Entity spans details
|
| 181 |
+
with gr.Column():
|
| 182 |
+
gr.Markdown("### Entity Details with Spans")
|
| 183 |
+
entity_details = gr.JSON()
|
| 184 |
+
|
| 185 |
+
# Set up event handlers for the analyze button
|
| 186 |
+
analyze_btn.click(
|
| 187 |
+
fn=process_text,
|
| 188 |
+
inputs=[text_input, entities_input],
|
| 189 |
+
outputs=[result_html, entity_details]
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Set up event handlers for example buttons
|
| 193 |
+
example1_btn.click(
|
| 194 |
+
fn=lambda: "Impact of cofactor - binding loop mutations on thermotolerance and activity of E. coli transketolase",
|
| 195 |
+
inputs=None,
|
| 196 |
+
outputs=text_input
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
example2_btn.click(
|
| 200 |
+
fn=lambda: "The patient was diagnosed with pneumonia caused by Streptococcus pneumoniae and treated with antibiotics for 7 days.",
|
| 201 |
+
inputs=None,
|
| 202 |
+
outputs=text_input
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
example3_btn.click(
|
| 206 |
+
fn=lambda: "We compared growth rates of E. coli, B. subtilis and S. aureus in various media containing different carbon sources.",
|
| 207 |
+
inputs=None,
|
| 208 |
+
outputs=text_input
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if __name__ == "__main__":
|
| 212 |
+
demo.launch()
|