File size: 9,358 Bytes
6b42508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import plotly.graph_objects as go
import plotly.io as pio
import numpy as np
import os
import uuid

"""
Interactive line chart example (Baseline / Improved / Target) with a live slider.

Context: research-style training curves for multiple datasets (CIFAR-10, CIFAR-100, ImageNet-1K).
The slider "Augmentation α" blends the Improved curve between the Baseline (α=0)
and an augmented counterpart (α=1) via a simple mixing equation.
Export remains responsive, with no zoom and no mode bar.
"""

# Grid (x) and parameterization
N = 240
x = np.linspace(0, 1, N)

# Logistic helper for smooth learning curves
def logistic(xv: np.ndarray, ymin: float, ymax: float, k: float, x0: float) -> np.ndarray:
    return ymin + (ymax - ymin) / (1.0 + np.exp(-k * (xv - x0)))

# Plausible dataset params (baseline vs augmented) + a constant target line
datasets_params = [
    {
        "name": "CIFAR-10",
        "base": {"ymin": 0.10, "ymax": 0.90, "k": 10.0, "x0": 0.55},
        "aug":  {"ymin": 0.15, "ymax": 0.96, "k": 12.0, "x0": 0.40},
        "target": 0.97,
    },
    {
        "name": "CIFAR-100",
        "base": {"ymin": 0.05, "ymax": 0.70, "k": 9.5, "x0": 0.60},
        "aug":  {"ymin": 0.08, "ymax": 0.80, "k": 11.0, "x0": 0.45},
        "target": 0.85,
    },
    {
        "name": "ImageNet-1K",
        "base": {"ymin": 0.02, "ymax": 0.68, "k": 8.5, "x0": 0.65},
        "aug":  {"ymin": 0.04, "ymax": 0.75, "k": 9.5, "x0": 0.50},
        "target": 0.82,
    },
]

# Initial dataset index and alpha
alpha0 = 0.7
ds0 = datasets_params[0]
base0 = logistic(x, **ds0["base"])
aug0 = logistic(x, **ds0["aug"])
target0 = np.full_like(x, ds0["target"], dtype=float)

# Traces: Baseline (fixed), Improved (blended by α), Target (constant goal)
blend = lambda l, e, a: (1 - a) * l + a * e
y1 = base0
y2 = blend(base0, aug0, alpha0)
y3 = target0

color_base = "#64748b"     # slate-500
color_improved = "#F981D4" # pink
color_target = "#4b5563"   # gray-600 (dash)

fig = go.Figure()
fig.add_trace(
    go.Scatter(
        x=x,
        y=y1,
        name="Baseline",
        mode="lines",
        line=dict(color=color_base, width=2, shape="spline", smoothing=0.6),
        hovertemplate="<b>%{fullData.name}</b><br>x=%{x:.2f}<br>y=%{y:.3f}<extra></extra>",
        showlegend=True,
    )
)
fig.add_trace(
    go.Scatter(
        x=x,
        y=y2,
        name="Improved",
        mode="lines",
        line=dict(color=color_improved, width=2, shape="spline", smoothing=0.6),
        hovertemplate="<b>%{fullData.name}</b><br>x=%{x:.2f}<br>y=%{y:.3f}<extra></extra>",
        showlegend=True,
    )
)
fig.add_trace(
    go.Scatter(
        x=x,
        y=y3,
        name="Target",
        mode="lines",
        line=dict(color=color_target, width=2, dash="dash"),
        hovertemplate="<b>%{fullData.name}</b><br>x=%{x:.2f}<br>y=%{y:.3f}<extra></extra>",
        showlegend=True,
    )
)

fig.update_layout(
    autosize=True,
    paper_bgcolor="rgba(0,0,0,0)",
    plot_bgcolor="rgba(0,0,0,0)",
    margin=dict(l=40, r=28, t=20, b=40),
    hovermode="x unified",
    legend=dict(
        orientation="v",
        x=1,
        y=0,
        xanchor="right",
        yanchor="bottom",
        bgcolor="rgba(255,255,255,0)",
        borderwidth=0,
    ),
    hoverlabel=dict(
        bgcolor="white",
        font=dict(color="#111827", size=12),
        bordercolor="rgba(0,0,0,0.15)",
        align="left",
        namelength=-1,
    ),
    xaxis=dict(
        showgrid=False,
        zeroline=False,
        showline=True,
        linecolor="rgba(0,0,0,0.25)",
        linewidth=1,
        ticks="outside",
        ticklen=6,
        tickcolor="rgba(0,0,0,0.25)",
        tickfont=dict(size=12, color="rgba(0,0,0,0.55)"),
        title=None,
        automargin=True,
        fixedrange=True,
    ),
    yaxis=dict(
        showgrid=False,
        zeroline=False,
        showline=True,
        linecolor="rgba(0,0,0,0.25)",
        linewidth=1,
        ticks="outside",
        ticklen=6,
        tickcolor="rgba(0,0,0,0.25)",
        tickfont=dict(size=12, color="rgba(0,0,0,0.55)"),
        title=None,
        tickformat=".2f",
        rangemode="tozero",
        automargin=True,
        fixedrange=True,
    ),
)

# Write the fragment next to this file into src/fragments/line.html (robust path)
output_path = os.path.join(os.path.dirname(__file__), "fragments", "line.html")
os.makedirs(os.path.dirname(output_path), exist_ok=True)

# Inject a small post-render script to round the hover box corners
post_script = """
(function(){
  function attach(gd){
    function round(){
      try {
        var root = gd && gd.parentNode ? gd.parentNode : document;
        var rects = root.querySelectorAll('.hoverlayer .hovertext rect');
        rects.forEach(function(r){ r.setAttribute('rx', 8); r.setAttribute('ry', 8); });
      } catch(e) {}
    }
    if (gd && gd.on) {
      gd.on('plotly_hover', round);
      gd.on('plotly_unhover', round);
      gd.on('plotly_relayout', round);
    }
    setTimeout(round, 0);
  }
  var plots = document.querySelectorAll('.js-plotly-plot');
  plots.forEach(attach);
})();
"""

html_plot = pio.to_html(
    fig,
    include_plotlyjs=False,
    full_html=False,
    post_script=post_script,
    config={
        "displayModeBar": False,
        "responsive": True,
        "scrollZoom": False,
        "doubleClick": False,
        "modeBarButtonsToRemove": [
            "zoom2d", "pan2d", "select2d", "lasso2d",
            "zoomIn2d", "zoomOut2d", "autoScale2d", "resetScale2d",
            "toggleSpikelines"
        ],
    },
)

# Build a self-contained fragment with a live slider (no mouseup required)
uid = uuid.uuid4().hex[:8]
slider_id = f"line-ex-alpha-{uid}"
container_id = f"line-ex-container-{uid}"

slider_tpl = '''
<div id="__CID__">
  __PLOT__
  <div class="plotly_controls" style="margin-top:12px; display:flex; gap:16px; align-items:center;">
    <label style="font-size:12px;color:rgba(0,0,0,.65); display:flex; align-items:center; gap:6px; white-space:nowrap; padding:6px 10px;">
      Dataset
      <select id="__DSID__" style="font-size:12px; padding:2px 6px;">
        <option value="0">CIFAR-10</option>
        <option value="1">CIFAR-100</option>
        <option value="2">ImageNet-1K</option>
      </select>
    </label>
    <label style="font-size:12px;color:rgba(0,0,0,.65);display:flex;align-items:center;gap:10px; flex:1; padding:6px 10px;">
      Augmentation α
      <input id="__SID__" type="range" min="0" max="1" step="0.01" value="__A0__" style="flex:1;">
      <span class="alpha-value">__A0__</span>
    </label>
  </div>
</div>
<script>
(function(){
  var container = document.getElementById('__CID__');
  if(!container) return;
  var gd = container.querySelector('.js-plotly-plot');
  var slider = document.getElementById('__SID__');
  var dsSelect = document.getElementById('__DSID__');
  var valueEl = container.querySelector('.alpha-value');
  var N = __N__;
  var xs = Array.from({length: N}, function(_,i){ return i/(N-1); });
  function logistic(x, ymin, ymax, k, x0){ return ymin + (ymax - ymin) / (1 + Math.exp(-k*(x - x0))); }
  function blend(l,e,a){ return (1-a)*l + a*e; }
  var datasets = [
    { name:'CIFAR-10',  base:{ymin:0.10,ymax:0.90,k:10.0,x0:0.55}, aug:{ymin:0.15,ymax:0.96,k:12.0,x0:0.40}, target:0.97 },
    { name:'CIFAR-100', base:{ymin:0.05,ymax:0.70,k:9.5,x0:0.60},  aug:{ymin:0.08,ymax:0.80,k:11.0,x0:0.45},  target:0.85 },
    { name:'ImageNet-1K', base:{ymin:0.02,ymax:0.68,k:8.5,x0:0.65}, aug:{ymin:0.04,ymax:0.75,k:9.5,x0:0.50},  target:0.82 }
  ];
  var dsi = 0;
  var yb = xs.map(function(x){ return logistic(x, datasets[dsi].base.ymin, datasets[dsi].base.ymax, datasets[dsi].base.k, datasets[dsi].base.x0); });
  var ya = xs.map(function(x){ return logistic(x, datasets[dsi].aug.ymin, datasets[dsi].aug.ymax, datasets[dsi].aug.k, datasets[dsi].aug.x0); });
  var yt = xs.map(function(){ return datasets[dsi].target; });
  function applyAlpha(a){
    var yi = yb.map(function(v,i){ return blend(v, ya[i], a); });
    Plotly.restyle(gd, {y:[yi]}, [1]); // only Improved changes with α
    if(valueEl) valueEl.textContent = a.toFixed(2);
  }
  function applyDataset(){
    var d = datasets[dsi];
    yb = xs.map(function(x){ return logistic(x, d.base.ymin, d.base.ymax, d.base.k, d.base.x0); });
    ya = xs.map(function(x){ return logistic(x, d.aug.ymin, d.aug.ymax, d.aug.k, d.aug.x0); });
    yt = xs.map(function(){ return d.target; });
    var a = parseFloat(slider.value)||0;
    var yi = yb.map(function(v,i){ return blend(v, ya[i], a); });
    Plotly.restyle(gd, {y:[yb]}, [0]); // Baseline
    Plotly.restyle(gd, {y:[yi]}, [1]); // Improved (blended)
    Plotly.restyle(gd, {y:[yt]}, [2]); // Target
  }
  var initA = parseFloat(slider.value)||0;
  slider.addEventListener('input', function(e){ applyAlpha(parseFloat(e.target.value)||0); });
  dsSelect.addEventListener('change', function(e){ dsi = parseInt(e.target.value)||0; applyDataset(); });
  setTimeout(function(){ applyDataset(); applyAlpha(initA); }, 0);
})();
</script>
'''

slider_html = (slider_tpl
    .replace('__CID__', container_id)
    .replace('__SID__', slider_id)
    .replace('__A0__', f"{alpha0:.2f}")
    .replace('__N__', str(N))
    .replace('__PLOT__', html_plot)
)

with open("./plotly-line.html", "w", encoding="utf-8") as f:
    f.write(slider_html)