Spaces:
Paused
Paused
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.nn.utils.spectral_norm as spectral_norm | |
| from torch.autograd import Function | |
| from utils import util, cielab | |
| import cv2, math, random | |
| def tensor2array(tensors): | |
| arrays = tensors.detach().to("cpu").numpy() | |
| return np.transpose(arrays, (0, 2, 3, 1)) | |
| def rgb2gray(color_batch): | |
| #! gray = 0.299*R+0.587*G+0.114*B | |
| gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114 | |
| gray_batch = gray_batch.unsqueeze_(1) | |
| return gray_batch | |
| def getParamsAmount(model): | |
| params = list(model.parameters()) | |
| count = 0 | |
| for var in params: | |
| l = 1 | |
| for j in var.size(): | |
| l *= j | |
| count += l | |
| return count | |
| def checkAverageGradient(model): | |
| meanGrad, cnt = 0.0, 0 | |
| for name, parms in model.named_parameters(): | |
| if parms.requires_grad: | |
| meanGrad += torch.mean(torch.abs(parms.grad)) | |
| cnt += 1 | |
| return meanGrad.item() / cnt | |
| def get_random_mask(N, H, W, minNum, maxNum): | |
| binary_maps = np.zeros((N, H*W), np.float32) | |
| for i in range(N): | |
| locs = random.sample(range(0, H*W), random.randint(minNum,maxNum)) | |
| binary_maps[i, locs] = 1 | |
| return binary_maps.reshape(N,1,H,W) | |
| def io_user_control(hint_mask, spix_colors, output=True): | |
| cache_dir = '/apdcephfs/private_richardxia' | |
| if output: | |
| print('--- data saving') | |
| mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0 | |
| util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1) | |
| fake_gray = torch.zeros_like(spix_colors[:,[0],:,:]) | |
| spix_labs = torch.cat((fake_gray,spix_colors), dim=1) | |
| spix_imgs = tensor2array(spix_labs) | |
| util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1) | |
| return hint_mask, spix_colors | |
| else: | |
| print('--- data loading') | |
| mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE) | |
| mask_img = np.expand_dims(mask_img, axis=2) / 255. | |
| hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1))) | |
| hint_mask = hint_mask.unsqueeze(0).cuda() | |
| bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR) | |
| rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) | |
| rgb_img = np.array(rgb_img / 255., np.float32) | |
| lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB) | |
| lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1))) | |
| ab_chans = lab_img[1:3,:,:] / 110. | |
| spix_colors = ab_chans.unsqueeze(0).cuda() | |
| return hint_mask.float(), spix_colors.float() | |
| class Quantize(Function): | |
| def forward(ctx, x): | |
| ctx.save_for_backward(x) | |
| y = x.round() | |
| return y | |
| def backward(ctx, grad_output): | |
| """ | |
| In the backward pass we receive a Tensor containing the gradient of the loss | |
| with respect to the output, and we need to compute the gradient of the loss | |
| with respect to the input. | |
| """ | |
| inputX = ctx.saved_tensors | |
| return grad_output | |
| def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None): | |
| ## to highlight the seeds with 1-pixel margin | |
| binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps)) | |
| center_mask = dilate_seeds(binary_map, kernel_size=kernel_size) | |
| margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask | |
| ## drop colors | |
| dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2) | |
| marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays) | |
| if base_ABs is None: | |
| marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs) | |
| else: | |
| marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs) | |
| marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs) | |
| return torch.cat((marked_grays,marked_ABs), dim=1) | |
| def dilate_seeds(gate_maps, kernel_size=3): | |
| N,C,H,W = gate_maps.shape | |
| input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2) | |
| #! Notice: differentiable? just like max pooling? | |
| dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True) | |
| output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1) | |
| #print('-------', input_unf.shape) | |
| return output | |
| class RebalanceLoss(Function): | |
| def forward(ctx, data_input, weights): | |
| ctx.save_for_backward(weights) | |
| return data_input.clone() | |
| def backward(ctx, grad_output): | |
| weights, = ctx.saved_tensors | |
| # reweigh gradient pixelwise so that rare colors get a chance to | |
| # contribute | |
| grad_input = grad_output * weights | |
| # second return value is None since we are not interested in the | |
| # gradient with respect to the weights | |
| return grad_input, None | |
| class GetClassWeights: | |
| def __init__(self, cielab, lambda_=0.5, device='cuda'): | |
| prior = torch.from_numpy(cielab.gamut.prior).cuda() | |
| uniform = torch.zeros_like(prior) | |
| uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform) | |
| self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform) | |
| self.weights /= torch.sum(prior * self.weights) | |
| def __call__(self, ab_actual): | |
| return self.weights[ab_actual.argmax(dim=1, keepdim=True)] | |
| class ColorLabel: | |
| def __init__(self, lambda_=0.5, device='cuda'): | |
| self.cielab = cielab.CIELAB() | |
| self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device) | |
| prior = torch.from_numpy(self.cielab.gamut.prior).to(device) | |
| uniform = torch.zeros_like(prior) | |
| uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform) | |
| self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform) | |
| self.weights /= torch.sum(prior * self.weights) | |
| def visualize_label(self, step=3): | |
| height, width = 200, 313*step | |
| label_lab = np.ones((height,width,3), np.float32) | |
| for x in range(313): | |
| ab = self.cielab.q_to_ab[x,:] | |
| label_lab[:,step*x:step*(x+1),1:] = ab / 110. | |
| label_lab[:,:,0] = np.zeros((height,width), np.float32) | |
| return label_lab | |
| def _gauss_eval(x, mu, sigma): | |
| norm = 1 / (2 * math.pi * sigma) | |
| return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2)) | |
| def get_classweights(self, batch_gt_indx): | |
| #return self.weights[batch_gt_q.argmax(dim=1, keepdim=True)] | |
| return self.weights[batch_gt_indx] | |
| def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0): | |
| batch_ab = batch_ab * 110. | |
| n, _, h, w = batch_ab.shape | |
| m = n * h * w | |
| # find nearest neighbours | |
| ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) # (2, n*h*w) | |
| cdist = torch.cdist(self.q_to_ab, ab_.t()) | |
| nns = cdist.argsort(dim=0)[:neighbours, :] | |
| # gaussian weighting | |
| nn_gauss = batch_ab.new_zeros(neighbours, m) | |
| for i in range(neighbours): | |
| nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma) | |
| nn_gauss /= nn_gauss.sum(dim=0, keepdim=True) | |
| # expand | |
| bins = self.cielab.gamut.EXPECTED_SIZE | |
| q = batch_ab.new_zeros(bins, m) | |
| q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss | |
| return q.reshape(bins, n, h, w).permute(1, 0, 2, 3) | |
| def decode_ind2ab(self, batch_q, T=0.38): | |
| _, _, h, w = batch_q.shape | |
| batch_q = F.softmax(batch_q, dim=1) | |
| if T%1 == 0: | |
| # take the T-st probable index | |
| sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True) | |
| #print('checking [index]', batch_indexs[:,0:5,5,5]) | |
| #print('checking [probs]', sorted_probs[:,0:5,5,5]) | |
| batch_indexs = batch_indexs[:,T:T+1,:,:] | |
| #batch_indexs = torch.where(sorted_probs[:,T:T+1,:,:] > 0.25, batch_indexs[:,T:T+1,:,:], batch_indexs[:,0:1,:,:]) | |
| ab = torch.stack([ | |
| self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1) | |
| for q_i in batch_indexs]) | |
| else: | |
| batch_q = torch.exp(batch_q / T) | |
| batch_q /= batch_q.sum(dim=1, keepdim=True) | |
| a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,))) | |
| a = a.unsqueeze(dim=1) | |
| b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,))) | |
| b = b.unsqueeze(dim=1) | |
| ab = torch.cat((a, b), dim=1) | |
| ab = ab / 110. | |
| return ab.type(batch_q.dtype) | |
| def init_spixel_grid(img_height, img_width, spixel_size=16): | |
| # get spixel id for the final assignment | |
| n_spixl_h = int(np.floor(img_height/spixel_size)) | |
| n_spixl_w = int(np.floor(img_width/spixel_size)) | |
| spixel_height = int(img_height / (1. * n_spixl_h)) | |
| spixel_width = int(img_width / (1. * n_spixl_w)) | |
| spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w))) | |
| def shift9pos(input, h_shift_unit=1, w_shift_unit=1): | |
| # input should be padding as (c, 1+ height+1, 1+width+1) | |
| input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge') | |
| input_pd = np.expand_dims(input_pd, axis=0) | |
| # assign to ... | |
| top = input_pd[:, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit] | |
| bottom = input_pd[:, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit] | |
| left = input_pd[:, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit] | |
| right = input_pd[:, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:] | |
| center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit] | |
| bottom_right = input_pd[:, 2 * h_shift_unit:, 2 * w_shift_unit:] | |
| bottom_left = input_pd[:, 2 * h_shift_unit:, :-2 * w_shift_unit] | |
| top_right = input_pd[:, :-2 * h_shift_unit, 2 * w_shift_unit:] | |
| top_left = input_pd[:, :-2 * h_shift_unit, :-2 * w_shift_unit] | |
| shift_tensor = np.concatenate([ top_left, top, top_right, | |
| left, center, right, | |
| bottom_left, bottom, bottom_right], axis=0) | |
| return shift_tensor | |
| spix_idx_tensor_ = shift9pos(spix_values) | |
| spix_idx_tensor = np.repeat( | |
| np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2) | |
| spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float) | |
| #! pixel coord feature maps | |
| all_h_coords = np.arange(0, img_height, 1) | |
| all_w_coords = np.arange(0, img_width, 1) | |
| curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij')) | |
| coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]]) | |
| coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float) | |
| return spixel_id_tensor, coord_feat_tensor | |
| def split_spixels(assign_map, spixel_ids): | |
| N,C,H,W = assign_map.shape | |
| spixel_id_map = spixel_ids.expand(N,-1,-1,-1) | |
| assig_max,_ = torch.max(assign_map, dim=1, keepdim=True) | |
| assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda()) | |
| ## winner take all | |
| new_spixl_map_ = spixel_id_map * assignment_ | |
| new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int) | |
| return new_spixl_map | |
| def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False): | |
| def feat_prob_sum(feat_sum, prob_sum, shift_feat): | |
| feat_sum += shift_feat[:, :-1, :, :] | |
| prob_sum += shift_feat[:, -1:, :, :] | |
| return feat_sum, prob_sum | |
| b, _, h, w = input.shape | |
| h_shift_unit = 1 | |
| w_shift_unit = 1 | |
| p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit) | |
| feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1) # b* (n+1) *h*w | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| send_to_top_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:] | |
| feat_sum = send_to_top_left[:, :-1, :, :].clone() | |
| prob_sum = send_to_top_left[:, -1:, :, :].clone() | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| top = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, :-2 * w_shift_unit] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, 2 * w_shift_unit:] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom) | |
| prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w | |
| bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit] | |
| feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right) | |
| pooled_feat = feat_sum / (prob_sum + 1e-8) | |
| if need_entry_prob: | |
| return pooled_feat, prob_sum | |
| return pooled_feat | |
| def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25): | |
| N,C,H,W = affinity_map.shape | |
| device = affinity_map.device | |
| assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True) | |
| assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device)) | |
| ## one_map = (N,1,H,W) | |
| _, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True) | |
| #all_one_map = torch.ones(elem_num_maps.shape).cuda() | |
| #empty_mask = torch.where(elem_num_maps < elem_thres/256, all_one_map, 1-all_one_map) | |
| return elem_num_maps | |
| def upfeat(input, prob, up_h=2, up_w=2): | |
| # input b*n*H*W downsampled | |
| # prob b*9*h*w | |
| b, c, h, w = input.shape | |
| h_shift = 1 | |
| w_shift = 1 | |
| p2d = (w_shift, w_shift, h_shift, h_shift) | |
| feat_pd = F.pad(input, p2d, mode='constant', value=0) | |
| gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest') | |
| feat_sum = gt_frm_top_left * prob.narrow(1,0,1) | |
| top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += top * prob.narrow(1, 1, 1) | |
| top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += top_right * prob.narrow(1,2,1) | |
| left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += left * prob.narrow(1, 3, 1) | |
| center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest') | |
| feat_sum += center * prob.narrow(1, 4, 1) | |
| right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += right * prob.narrow(1, 5, 1) | |
| bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += bottom_left * prob.narrow(1, 6, 1) | |
| bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += bottom * prob.narrow(1, 7, 1) | |
| bottom_right = F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') | |
| feat_sum += bottom_right * prob.narrow(1, 8, 1) | |
| return feat_sum | |
| def suck_and_spread(self, base_maps, seg_layers): | |
| N,S,H,W = seg_layers.shape | |
| base_maps = base_maps.unsqueeze(1) | |
| seg_layers = seg_layers.unsqueeze(2) | |
| ## (N,S,C,1,1) = (N,1,C,H,W) * (N,S,1,H,W) | |
| mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True)) | |
| ## normalized to be sum one | |
| weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True)) | |
| ## (N,S,C,H,W) = (N,S,C,1,1) * (N,S,1,H,W) | |
| recon_maps = mean_val_layers * weight_layers | |
| return recon_maps.sum(dim=1) | |
| #! copy from Richard Zhang [SIGGRAPH2017] | |
| # RGB grid points maps to Lab range: L[0,100], a[-86.183,98,233], b[-107.857,94.478] | |
| #------------------------------------------------------------------------------ | |
| def rgb2xyz(rgb): # rgb from [0,1] | |
| # xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], | |
| # [0.212671, 0.715160, 0.072169], | |
| # [0.019334, 0.119193, 0.950227]]) | |
| mask = (rgb > .04045).type(torch.FloatTensor) | |
| if(rgb.is_cuda): | |
| mask = mask.cuda() | |
| rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask) | |
| x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:] | |
| y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:] | |
| z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:] | |
| out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1) | |
| return out | |
| def xyz2rgb(xyz): | |
| # array([[ 3.24048134, -1.53715152, -0.49853633], | |
| # [-0.96925495, 1.87599 , 0.04155593], | |
| # [ 0.05564664, -0.20404134, 1.05731107]]) | |
| r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:] | |
| g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:] | |
| b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:] | |
| rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1) | |
| #! sometimes reaches a small negative number, which causes NaNs | |
| rgb = torch.max(rgb,torch.zeros_like(rgb)) | |
| mask = (rgb > .0031308).type(torch.FloatTensor) | |
| if(rgb.is_cuda): | |
| mask = mask.cuda() | |
| rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask) | |
| return rgb | |
| def xyz2lab(xyz): | |
| # 0.95047, 1., 1.08883 # white | |
| sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None] | |
| if(xyz.is_cuda): | |
| sc = sc.cuda() | |
| xyz_scale = xyz/sc | |
| mask = (xyz_scale > .008856).type(torch.FloatTensor) | |
| if(xyz_scale.is_cuda): | |
| mask = mask.cuda() | |
| xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask) | |
| L = 116.*xyz_int[:,1,:,:]-16. | |
| a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:]) | |
| b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:]) | |
| out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1) | |
| return out | |
| def lab2xyz(lab): | |
| y_int = (lab[:,0,:,:]+16.)/116. | |
| x_int = (lab[:,1,:,:]/500.) + y_int | |
| z_int = y_int - (lab[:,2,:,:]/200.) | |
| if(z_int.is_cuda): | |
| z_int = torch.max(torch.Tensor((0,)).cuda(), z_int) | |
| else: | |
| z_int = torch.max(torch.Tensor((0,)), z_int) | |
| out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1) | |
| mask = (out > .2068966).type(torch.FloatTensor) | |
| if(out.is_cuda): | |
| mask = mask.cuda() | |
| out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask) | |
| sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None] | |
| sc = sc.to(out.device) | |
| out = out*sc | |
| return out | |
| def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110): | |
| #! input rgb: [0,1] | |
| #! output lab: [-1,1] | |
| lab = xyz2lab(rgb2xyz(rgb)) | |
| l_rs = (lab[:,[0],:,:]-l_mean) / l_norm | |
| ab_rs = lab[:,1:,:,:] / ab_norm | |
| out = torch.cat((l_rs,ab_rs),dim=1) | |
| return out | |
| def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110): | |
| #! input lab: [-1,1] | |
| #! output rgb: [0,1] | |
| l_ = lab_rs[:,[0],:,:] * l_norm + l_mean | |
| ab = lab_rs[:,1:,:,:] * ab_norm | |
| lab = torch.cat((l_,ab), dim=1) | |
| out = xyz2rgb(lab2xyz(lab)) | |
| return out | |
| if __name__ == '__main__': | |
| minL, minA, minB = 999., 999., 999. | |
| maxL, maxA, maxB = 0., 0., 0. | |
| for r in range(256): | |
| print('h',r) | |
| for g in range(256): | |
| for b in range(256): | |
| rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0 | |
| #lab_img = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB) | |
| rgb = torch.from_numpy(rgb.transpose((2, 0, 1))) | |
| rgb = rgb.reshape(1,3,1,1) | |
| lab = rgb2lab(rgb) | |
| lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50 | |
| lab[:,1:,:,:] = lab[:,1:,:,:] * 110 | |
| lab = lab.squeeze() | |
| lab_float = lab.numpy() | |
| #print('zhang vs. cv2:', lab_float, lab_img.squeeze()) | |
| minL = min(lab_float[0], minL) | |
| minA = min(lab_float[1], minA) | |
| minB = min(lab_float[2], minB) | |
| maxL = max(lab_float[0], maxL) | |
| maxA = max(lab_float[1], maxA) | |
| maxB = max(lab_float[2], maxB) | |
| print('L:', minL, maxL) | |
| print('A:', minA, maxA) | |
| print('B:', minB, maxB) |