candlestick-api / app.py
doinglean's picture
Update app.py
d5e4a59 verified
import gradio as gr
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
import cv2
import numpy as np
import re
# Lade das Modell
model_path = hf_hub_download(repo_id="foduucom/stockmarket-pattern-detection-yolov8", filename="model.pt")
model = YOLO(model_path)
def analyze_image(image, prompt):
# Konvertiere PIL-Bild zu OpenCV-Format
image_np = np.array(image)
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Führe Objekterkennung durch
results = model.predict(source=image_np, save=False)
# Extrahiere Kerzen
detections = []
for result in results:
for box in result.boxes:
label = result.names[int(box.cls)]
confidence = float(box.conf)
# Extrahiere Bounding-Box-Koordinaten
xmin, ymin, xmax, ymax = box.xyxy[0].tolist()
# Schneide die Kerze aus dem Bild für Farbanalyse
candle_roi = image_cv[int(ymin):int(ymax), int(xmin):int(xmax)]
# Berechne dominante Farbe (RGB)
mean_color = np.mean(candle_roi, axis=(0, 1)).astype(int)
color_rgb = f"RGB({mean_color[2]},{mean_color[1]},{mean_color[0]})" # RGB-Format
detections.append({
"pattern": label,
"confidence": confidence,
"color": color_rgb,
"x_center": (xmin + xmax) / 2, # Für Sortierung nach Position
"prompt_used": prompt
})
# Sortiere Kerzen nach x-Position (von rechts nach links = neueste zuerst)
detections = sorted(detections, key=lambda x: x["x_center"], reverse=True)
# Begrenze auf die letzten 10 Kerzen, wenn im Prompt gefordert
if "last 10 candles" in prompt.lower():
detections = detections[:10]
return detections
# Erstelle Gradio-Schnittstelle
iface = gr.Interface(
fn=analyze_image,
inputs=[
gr.Image(type="pil", label="Upload TradingView Screenshot"),
gr.Textbox(label="Prompt", placeholder="Enter your prompt, e.g., 'List last 10 candles with their colors'")
],
outputs="json",
title="Candlestick Pattern Detection",
description="Upload a TradingView screenshot and provide a prompt to detect candlestick patterns and their colors."
)
# Starte die App
iface.launch()