Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,29 +7,35 @@ import torch
|
|
| 7 |
model_path = hf_hub_download(repo_id="foduucom/stockmarket-pattern-detection-yolov8", filename="model.pt")
|
| 8 |
model = YOLO(model_path)
|
| 9 |
|
| 10 |
-
def analyze_image(image):
|
| 11 |
-
#
|
|
|
|
| 12 |
results = model.predict(source=image, save=False)
|
| 13 |
-
# Extrahiere Ergebnisse
|
| 14 |
detections = []
|
| 15 |
for result in results:
|
| 16 |
for box in result.boxes:
|
| 17 |
label = result.names[int(box.cls)]
|
| 18 |
confidence = float(box.conf)
|
|
|
|
|
|
|
| 19 |
detections.append({
|
| 20 |
"pattern": label,
|
| 21 |
"confidence": confidence,
|
| 22 |
-
"color":
|
|
|
|
| 23 |
})
|
| 24 |
return detections
|
| 25 |
|
| 26 |
-
# Erstelle Gradio-Schnittstelle
|
| 27 |
iface = gr.Interface(
|
| 28 |
fn=analyze_image,
|
| 29 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 30 |
outputs="json",
|
| 31 |
title="Candlestick Pattern Detection",
|
| 32 |
-
description="Upload a TradingView screenshot to detect candlestick patterns and colors."
|
| 33 |
)
|
| 34 |
|
| 35 |
# Starte die App
|
|
|
|
| 7 |
model_path = hf_hub_download(repo_id="foduucom/stockmarket-pattern-detection-yolov8", filename="model.pt")
|
| 8 |
model = YOLO(model_path)
|
| 9 |
|
| 10 |
+
def analyze_image(image, prompt):
|
| 11 |
+
# Verwende den Prompt (falls nötig, hier als Kontext für die Verarbeitung)
|
| 12 |
+
# YOLOv8 ignoriert den Prompt direkt, daher speichern wir ihn für die Logik
|
| 13 |
results = model.predict(source=image, save=False)
|
|
|
|
| 14 |
detections = []
|
| 15 |
for result in results:
|
| 16 |
for box in result.boxes:
|
| 17 |
label = result.names[int(box.cls)]
|
| 18 |
confidence = float(box.conf)
|
| 19 |
+
# Farben basierend auf Label oder Prompt (z. B. "bullish" für grün)
|
| 20 |
+
color = "green" if "bullish" in prompt.lower() or "Bullish" in label else "red"
|
| 21 |
detections.append({
|
| 22 |
"pattern": label,
|
| 23 |
"confidence": confidence,
|
| 24 |
+
"color": color,
|
| 25 |
+
"prompt_used": prompt # Rückgabe des Prompts zur Überprüfung
|
| 26 |
})
|
| 27 |
return detections
|
| 28 |
|
| 29 |
+
# Erstelle Gradio-Schnittstelle mit Bild- und Text-Eingabe
|
| 30 |
iface = gr.Interface(
|
| 31 |
fn=analyze_image,
|
| 32 |
+
inputs=[
|
| 33 |
+
gr.Image(type="pil", label="Upload TradingView Screenshot"),
|
| 34 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt, e.g., 'Detect candlestick patterns and colors'")
|
| 35 |
+
],
|
| 36 |
outputs="json",
|
| 37 |
title="Candlestick Pattern Detection",
|
| 38 |
+
description="Upload a TradingView screenshot and provide a prompt to detect candlestick patterns and colors."
|
| 39 |
)
|
| 40 |
|
| 41 |
# Starte die App
|