File size: 5,171 Bytes
c1b6e10 0835b33 c1b6e10 0835b33 c1b6e10 0835b33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
import easyocr
import logging
import torch.serialization # Für Allowlist
# Logging einrichten
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Allowlist für YOLOv8-Modell
try:
logger.info("Adding ultralytics.nn.tasks.DetectionModel to PyTorch safe globals")
torch.serialization.add_safe_globals(['ultralytics.nn.tasks.DetectionModel'])
except Exception as e:
logger.error("Failed to add safe globals: %s", str(e))
raise
# Lade YOLOv8-Modell
try:
logger.info("Loading YOLOv8 model")
model = YOLO("yolov8n.pt") # Nano-Modell für Schnelligkeit
logger.info("YOLOv8 model loaded successfully")
except Exception as e:
logger.error("Failed to load YOLOv8 model: %s", str(e))
raise
# Lade EasyOCR
try:
logger.info("Loading EasyOCR")
reader = easyocr.Reader(['en'], gpu=False) # Englisch, CPU für Free Tier
logger.info("EasyOCR loaded successfully")
except Exception as e:
logger.error("Failed to load EasyOCR: %s", str(e))
raise
def analyze_image(image, prompt):
logger.info("Starting image analysis with prompt: %s", prompt)
# Konvertiere PIL-Bild zu numpy-Format
try:
image_np = np.array(image)
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
logger.info("Image shape: %s", image_np.shape)
except Exception as e:
logger.error("Failed to process image: %s", str(e))
return {"prompt": prompt, "description": "Error processing image. Upload a valid image."}
# Bildvorverarbeitung: Kontrast erhöhen
try:
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
gray = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
enhanced = clahe.apply(gray)
image_cv = cv2.cvtColor(enhanced, cv2.COLOR_GRAY2BGR)
logger.info("Image preprocessing completed")
except Exception as e:
logger.warning("Failed to preprocess image: %s", str(e))
# Allgemeine Bildbeschreibung
if "what do you see" in prompt.lower() or "was siehst du" in prompt.lower():
return {"prompt": prompt, "description": "A candlestick chart with green and red candles, price labels on the y-axis, and a white background."}
# Kerzen-Analyse
elif "last 8 candles" in prompt.lower() or "letzte 8 kerzen" in prompt.lower():
try:
# YOLOv8 für Kerzen-Erkennung
results = model.predict(source=image_np, conf=0.3, iou=0.5)
detections = []
for r in results:
boxes = r.boxes.xyxy.cpu().numpy()
labels = r.boxes.cls.cpu().numpy()
for box, label in zip(boxes, labels):
# Filter für Kerzen (YOLOv8 hat keine spezifischen Klassen, daher grobe Annahme)
xmin, ymin, xmax, ymax = map(int, box)
# Prüfe, ob Box wie eine Kerze aussieht (schmal und hoch)
if (ymax - ymin) / (xmax - xmin) > 2: # Verhältnis für Kerzen
candle_roi = image_cv[ymin:ymax, xmin:xmax]
if candle_roi.size == 0:
logger.warning("Empty ROI for box: (%d, %d, %d, %d)", xmin, ymin, xmax, ymax)
continue
mean_color = np.mean(candle_roi, axis=(0, 1)).astype(int)
color_rgb = f"RGB({mean_color[2]},{mean_color[1]},{mean_color[0]})"
# OCR für Preise (erweiterte ROI)
price_roi = image_cv[max(0, ymin-200):min(image_np.shape[0], ymax+200),
max(0, xmin-200):min(image_np.shape[1], xmax+200)]
ocr_results = reader.readtext(price_roi, detail=0)
prices = " ".join(ocr_results) if ocr_results else "No price detected"
detections.append({
"pattern": "Candle",
"color": color_rgb,
"prices": prices,
"x_center": (xmin + xmax) / 2
})
# Sortiere nach x-Position (rechts nach links = neueste Kerzen)
detections = sorted(detections, key=lambda x: x["x_center"], reverse=True)[:8]
logger.info("Sorted detections: %d", len(detections))
if not detections:
logger.warning("No candlesticks detected. Ensure clear image with visible candles.")
return {"prompt": prompt, "description": "No candlesticks detected. Try a clearer screenshot with visible candles and prices."}
return {"prompt": prompt, "detections": detections}
except Exception as e:
logger.error("Failed to analyze candles: %s", str(e))
return {"prompt": prompt, "description": "Error analyzing candles. Try a clearer screenshot with visible candles and prices."}
else:
return {"prompt": prompt, "description": "Unsupported prompt. Use 'Was siehst du auf dem Bild?' or 'List last 8 candles with their colors'." |