Spaces:
Sleeping
Sleeping
| import cv2 | |
| import torch | |
| import streamlit as st | |
| from PIL import Image | |
| from torch.nn import functional as nnf | |
| # @st.cache_data | |
| def generate2( | |
| model, | |
| tokenizer, | |
| tokens=None, | |
| prompt='', | |
| embed=None, | |
| entry_count=1, | |
| entry_length=67, | |
| top_p=0.98, | |
| temperature=1, | |
| stop_token='.', | |
| ): | |
| # model.eval() | |
| generated_list = [] | |
| stop_token_index = tokenizer.encode(stop_token)[0] | |
| filter_value = -float("Inf") | |
| device = next(model.parameters()).device | |
| with torch.no_grad(): | |
| for entry_idx in range(entry_count): | |
| if not tokens: | |
| tokens = torch.tensor(tokenizer.encode(prompt)) | |
| tokens = tokens.unsqueeze(0).to(device) | |
| emb_tokens = model.gpt.transformer.wte(tokens) | |
| if embed is not None: | |
| generated = torch.cat((embed, emb_tokens), dim=1) | |
| else: | |
| generated = emb_tokens | |
| for i in range(entry_length): | |
| outputs = model.gpt(inputs_embeds=generated) | |
| logits = outputs.logits | |
| logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
| ..., :-1 | |
| ].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
| logits[:, indices_to_remove] = filter_value | |
| top_k = 2000 | |
| top_p = 0.98 | |
| next_token = torch.argmax(logits, -1).unsqueeze(0) | |
| next_token_embed = model.gpt.transformer.wte(next_token) | |
| if tokens is None: | |
| tokens = next_token | |
| else: | |
| tokens = torch.cat((tokens, next_token), dim=1) | |
| generated = torch.cat((generated, next_token_embed), dim=1) | |
| if stop_token_index == next_token.item(): | |
| break | |
| output_list = list(tokens.squeeze().cpu().numpy()) | |
| output_text = tokenizer.decode(output_list) | |
| output_text = filter_ngrams(output_text) | |
| generated_list.append(output_text) | |
| return generated_list[0] | |
| def filter_ngrams(output_text): | |
| a_pos = output_text.find(' A:') | |
| sec_a_pos = output_text.find(' A:', a_pos + 1) | |
| return output_text[:sec_a_pos] | |
| def image_grid(imgs, rows, cols): | |
| assert len(imgs) == rows * cols | |
| w, h = imgs[0].size | |
| grid = Image.new('RGB', size=(cols * w, rows * h)) | |
| grid_w, grid_h = grid.size | |
| for i, img in enumerate(imgs): | |
| grid.paste(img, box=(i % cols * w, i // cols * h)) | |
| return grid | |
| def read_video(path, transform=None, frames_num=9, window=30): | |
| frames = [] | |
| cap = cv2.VideoCapture(path) | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| N = length // (frames_num) | |
| current_frame = 1 | |
| for i in range(length): | |
| ret, frame = cap.read(current_frame) | |
| if ret and i == current_frame and len(frames) < frames_num: | |
| size = 193, 193 | |
| frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| frame.thumbnail(size, Image.ANTIALIAS) | |
| frames.append(frame) | |
| current_frame += N | |
| cap.release() | |
| return frames | |
| # @st.cache_data | |
| def get_caption(model, tokenizer, prefix, prefix_length, prompt=''): | |
| device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
| prefix = prefix.to(device) | |
| with torch.no_grad(): | |
| prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
| if prompt: | |
| generated_text_prefix = generate2(model, tokenizer, prompt=prompt, embed=prefix_embed) | |
| else: | |
| generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) | |
| return generated_text_prefix.replace('\n', ' ') | |
| # @st.cache_data | |
| def get_ans(model, tokenizer, clip_emb, prefix_length, prompt): | |
| output = get_caption(model, tokenizer, clip_emb, prefix_length, prompt=prompt) | |
| ans = output[len(prompt):].strip() | |
| return {'answer': ans} | |