Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
-
# Load
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Function to rerank documents
|
| 8 |
def rerank(query, documents):
|
| 9 |
-
documents = documents.split("
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 12 |
return [{"document": doc, "score": round(score, 4)} for doc, score in ranked_docs]
|
| 13 |
|
| 14 |
# Gradio Interface
|
| 15 |
iface = gr.Interface(
|
| 16 |
fn=rerank,
|
| 17 |
-
inputs=["text", gr.Textbox(label="Documents (Separate with
|
| 18 |
outputs="json",
|
| 19 |
-
title="JinaAI v2 Reranker API",
|
| 20 |
-
description="Enter a query and documents (separated by '
|
| 21 |
)
|
| 22 |
|
| 23 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from optimum.pipelines import pipeline
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
|
| 5 |
+
# Load ONNX optimized model
|
| 6 |
+
model_name = "jinaai/jina-reranker-v2-base-multilingual"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = pipeline("text-classification", model=model_name, tokenizer=tokenizer)
|
| 9 |
|
| 10 |
# Function to rerank documents
|
| 11 |
def rerank(query, documents):
|
| 12 |
+
documents = documents.split("&&&")
|
| 13 |
+
inputs = [[query, doc] for doc in documents if doc.strip()]
|
| 14 |
+
scores = model(inputs)
|
| 15 |
+
ranked_docs = sorted(zip(documents, [s['score'] for s in scores]), key=lambda x: x[1], reverse=True)
|
| 16 |
return [{"document": doc, "score": round(score, 4)} for doc, score in ranked_docs]
|
| 17 |
|
| 18 |
# Gradio Interface
|
| 19 |
iface = gr.Interface(
|
| 20 |
fn=rerank,
|
| 21 |
+
inputs=["text", gr.Textbox(label="Documents (Separate with &&&)", placeholder="Doc1 &&& Doc2 &&& Doc3")],
|
| 22 |
outputs="json",
|
| 23 |
+
title="JinaAI v2 Reranker API (Optimized)",
|
| 24 |
+
description="Enter a query and documents (separated by '&&&'). The model will rank them based on relevance.",
|
| 25 |
)
|
| 26 |
|
| 27 |
iface.launch()
|