Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
-
import subprocess
|
| 5 |
-
import gradio as gr
|
| 6 |
import sys
|
| 7 |
# 🌟 إضافة هذا لإزالة تحذير tokenizers
|
| 8 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
@@ -20,7 +18,6 @@ except ImportError as e:
|
|
| 20 |
import tempfile
|
| 21 |
import numpy as np
|
| 22 |
from PIL import Image
|
| 23 |
-
import random
|
| 24 |
import gc
|
| 25 |
# (بقية تعريفات الثوابت و MODELS كما هي)
|
| 26 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
|
@@ -49,26 +46,6 @@ MIN_FRAMES_MODEL = 8
|
|
| 49 |
MAX_FRAMES_MODEL = 720 # 45 ثانية عند 16 FPS (45 * 16 = 720)
|
| 50 |
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
|
| 51 |
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
|
| 52 |
-
# Load the pipeline
|
| 53 |
-
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 54 |
-
MODEL_ID,
|
| 55 |
-
torch_dtype=torch.bfloat16,
|
| 56 |
-
).to('cuda')
|
| 57 |
-
pipe.enable_model_cpu_offload() # 🌟 تحسين: offload إلى CPU لتوفير 40% GPU memory
|
| 58 |
-
# Load LoRA with error handling for key mismatches
|
| 59 |
-
try:
|
| 60 |
-
pipe.load_lora_weights(
|
| 61 |
-
"Kijai/WanVideo_comfy",
|
| 62 |
-
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 63 |
-
adapter_name="lightx2v",
|
| 64 |
-
low_cpu_mem_usage=True # Helps with memory during load
|
| 65 |
-
)
|
| 66 |
-
print("LoRA weights loaded successfully!")
|
| 67 |
-
except Exception as e:
|
| 68 |
-
print(f"Warning: LoRA load failed (possible key mismatch): {e}")
|
| 69 |
-
print("Proceeding without LoRA for now.")
|
| 70 |
-
gc.collect() # Free up memory after loads
|
| 71 |
-
torch.cuda.empty_cache()
|
| 72 |
# 🌟 وظيفة لتحضير الصورة حسب الـ preset
|
| 73 |
def prepare_image(image, preset_key):
|
| 74 |
if image is None:
|
|
@@ -104,69 +81,84 @@ def prepare_image(image, preset_key):
|
|
| 104 |
image = image.resize((width, height), Image.Resampling.LANCZOS)
|
| 105 |
|
| 106 |
return image
|
| 107 |
-
# 🌟
|
|
|
|
| 108 |
@torch.no_grad()
|
| 109 |
-
def
|
| 110 |
-
if image is None:
|
| 111 |
-
raise ValueError("No image provided!")
|
| 112 |
-
|
| 113 |
-
prepared_image = prepare_image(image, preset_key)
|
| 114 |
-
height, width = prepared_image.size[1], prepared_image.size[0]
|
| 115 |
-
|
| 116 |
-
# Clamp num_frames
|
| 117 |
-
num_frames = max(MIN_FRAMES_MODEL, min(num_frames, MAX_FRAMES_MODEL))
|
| 118 |
-
|
| 119 |
-
# Memory check and cleanup before generation
|
| 120 |
-
if torch.cuda.is_available():
|
| 121 |
-
print(f"GPU Memory before generation: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 122 |
-
torch.cuda.empty_cache()
|
| 123 |
-
|
| 124 |
-
video_frames = pipe(
|
| 125 |
-
prompt=prompt,
|
| 126 |
-
image=prepared_image,
|
| 127 |
-
negative_prompt=negative_prompt,
|
| 128 |
-
num_frames=num_frames,
|
| 129 |
-
height=height,
|
| 130 |
-
width=width,
|
| 131 |
-
guidance_scale=guidance_scale,
|
| 132 |
-
num_inference_steps=num_inference_steps,
|
| 133 |
-
).frames[0]
|
| 134 |
-
|
| 135 |
-
# Export to temporary MP4
|
| 136 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 137 |
-
temp_video_path = os.path.join(tmpdirname, "temp_video.mp4")
|
| 138 |
-
export_to_video(video_frames, temp_video_path, fps=FIXED_FPS)
|
| 139 |
-
return temp_video_path
|
| 140 |
-
# 🌟 الوظيفة الرئيسية للتطبيق: توليد فيديو من صورة ونص فقط
|
| 141 |
-
@spaces.GPU # إضافة هذا لتفعيل GPU في Hugging Face Spaces
|
| 142 |
-
def generate_video_only(image, prompt, negative_prompt, num_frames, preset_key):
|
| 143 |
try:
|
| 144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
print("Generating video...")
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
# Cleanup after generation
|
|
|
|
| 149 |
gc.collect()
|
| 150 |
if torch.cuda.is_available():
|
| 151 |
torch.cuda.empty_cache()
|
| 152 |
-
|
| 153 |
-
return
|
| 154 |
except torch.cuda.OutOfMemoryError:
|
| 155 |
-
return None, "Error: Out of GPU memory. Try
|
| 156 |
except Exception as e:
|
| 157 |
return None, f"Error: {str(e)}"
|
| 158 |
# 🌟 إعداد الواجهة بـ Gradio
|
| 159 |
with gr.Blocks(title="Wan2.2 Image-to-Video Generator") as demo:
|
| 160 |
gr.Markdown("# 🌟 Wan2.2 I2V Generator")
|
| 161 |
-
gr.Markdown("Upload an image, add a prompt, and generate a video!
|
| 162 |
|
| 163 |
with gr.Row():
|
| 164 |
with gr.Column(scale=1):
|
| 165 |
image_input = gr.Image(type="pil", label="Input Image")
|
| 166 |
prompt_input = gr.Textbox(label="Prompt", placeholder="A dynamic scene from the image...", lines=2)
|
| 167 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="blurry, low quality", lines=1)
|
| 168 |
-
num_frames_slider = gr.Slider(MIN_FRAMES_MODEL,
|
| 169 |
preset_dropdown = gr.Dropdown(choices=list(DIMENSION_PRESETS.keys()), value="Custom (Default)", label="Output Preset")
|
|
|
|
| 170 |
generate_btn = gr.Button("Generate Video", variant="primary")
|
| 171 |
|
| 172 |
with gr.Column(scale=1):
|
|
@@ -181,7 +173,7 @@ with gr.Blocks(title="Wan2.2 Image-to-Video Generator") as demo:
|
|
| 181 |
|
| 182 |
generate_btn.click(
|
| 183 |
fn=generate_video_only,
|
| 184 |
-
inputs=[image_input, prompt_input, negative_prompt_input, num_frames_slider, preset_dropdown],
|
| 185 |
outputs=[output_video, status_output]
|
| 186 |
)
|
| 187 |
|
|
@@ -189,11 +181,11 @@ with gr.Blocks(title="Wan2.2 Image-to-Video Generator") as demo:
|
|
| 189 |
gr.Examples(
|
| 190 |
examples=[
|
| 191 |
[
|
| 192 |
-
None,
|
| 193 |
"The person in the image starts walking towards the camera with a smile.",
|
| 194 |
"static, blurry",
|
| 195 |
-
|
| 196 |
-
"
|
| 197 |
]
|
| 198 |
],
|
| 199 |
inputs=[image_input, prompt_input, negative_prompt_input, num_frames_slider, preset_dropdown]
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
import sys
|
| 5 |
# 🌟 إضافة هذا لإزالة تحذير tokenizers
|
| 6 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
| 18 |
import tempfile
|
| 19 |
import numpy as np
|
| 20 |
from PIL import Image
|
|
|
|
| 21 |
import gc
|
| 22 |
# (بقية تعريفات الثوابت و MODELS كما هي)
|
| 23 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
|
|
|
| 46 |
MAX_FRAMES_MODEL = 720 # 45 ثانية عند 16 FPS (45 * 16 = 720)
|
| 47 |
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
|
| 48 |
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# 🌟 وظيفة لتحضير الصورة حسب الـ preset
|
| 50 |
def prepare_image(image, preset_key):
|
| 51 |
if image is None:
|
|
|
|
| 81 |
image = image.resize((width, height), Image.Resampling.LANCZOS)
|
| 82 |
|
| 83 |
return image
|
| 84 |
+
# 🌟 الوظيفة الرئيسية للتطبيق: توليد فيديو من صورة ونص فقط (مع lazy loading للنموذج)
|
| 85 |
+
@spaces.GPU(duration=600) # 10 دقائق timeout للسماح بوقت أطول
|
| 86 |
@torch.no_grad()
|
| 87 |
+
def generate_video_only(image, prompt, negative_prompt, num_frames, preset_key, guidance_scale=7.5, num_inference_steps=10): # Reduced steps to 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
try:
|
| 89 |
+
# Lazy load the pipeline inside the function to avoid startup issues
|
| 90 |
+
print("Loading model...")
|
| 91 |
+
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 92 |
+
MODEL_ID,
|
| 93 |
+
torch_dtype=torch.bfloat16,
|
| 94 |
+
).to('cuda')
|
| 95 |
+
pipe.enable_model_cpu_offload() # Offload to CPU for memory savings
|
| 96 |
+
|
| 97 |
+
# Optional: Load LoRA if possible
|
| 98 |
+
try:
|
| 99 |
+
pipe.load_lora_weights(
|
| 100 |
+
"Kijai/WanVideo_comfy",
|
| 101 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 102 |
+
adapter_name="lightx2v",
|
| 103 |
+
low_cpu_mem_usage=True
|
| 104 |
+
)
|
| 105 |
+
print("LoRA weights loaded successfully!")
|
| 106 |
+
except Exception as e:
|
| 107 |
+
print(f"Warning: LoRA load failed: {e}")
|
| 108 |
+
print("Proceeding without LoRA.")
|
| 109 |
+
|
| 110 |
+
# Memory cleanup before generation
|
| 111 |
+
gc.collect()
|
| 112 |
+
if torch.cuda.is_available():
|
| 113 |
+
torch.cuda.empty_cache()
|
| 114 |
+
print(f"GPU Memory before generation: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 115 |
+
|
| 116 |
+
# Prepare image and generate
|
| 117 |
+
prepared_image = prepare_image(image, preset_key)
|
| 118 |
+
height, width = prepared_image.size[1], prepared_image.size[0]
|
| 119 |
+
num_frames = max(MIN_FRAMES_MODEL, min(num_frames, MAX_FRAMES_MODEL))
|
| 120 |
+
|
| 121 |
print("Generating video...")
|
| 122 |
+
video_frames = pipe(
|
| 123 |
+
prompt=prompt,
|
| 124 |
+
image=prepared_image,
|
| 125 |
+
negative_prompt=negative_prompt,
|
| 126 |
+
num_frames=num_frames,
|
| 127 |
+
height=height,
|
| 128 |
+
width=width,
|
| 129 |
+
guidance_scale=guidance_scale,
|
| 130 |
+
num_inference_steps=num_inference_steps,
|
| 131 |
+
).frames[0]
|
| 132 |
+
|
| 133 |
+
# Export to temporary MP4
|
| 134 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 135 |
+
temp_video_path = os.path.join(tmpdirname, "temp_video.mp4")
|
| 136 |
+
export_to_video(video_frames, temp_video_path, fps=FIXED_FPS)
|
| 137 |
+
|
| 138 |
# Cleanup after generation
|
| 139 |
+
del pipe # Delete to free memory
|
| 140 |
gc.collect()
|
| 141 |
if torch.cuda.is_available():
|
| 142 |
torch.cuda.empty_cache()
|
| 143 |
+
|
| 144 |
+
return temp_video_path, "Success! Video generated."
|
| 145 |
except torch.cuda.OutOfMemoryError:
|
| 146 |
+
return None, "Error: Out of GPU memory. Try fewer frames (e.g., 8) or lower resolution."
|
| 147 |
except Exception as e:
|
| 148 |
return None, f"Error: {str(e)}"
|
| 149 |
# 🌟 إعداد الواجهة بـ Gradio
|
| 150 |
with gr.Blocks(title="Wan2.2 Image-to-Video Generator") as demo:
|
| 151 |
gr.Markdown("# 🌟 Wan2.2 I2V Generator")
|
| 152 |
+
gr.Markdown("Upload an image, add a prompt, and generate a video! **Tip: Start with 8 frames on free T4 GPU to avoid timeouts.**")
|
| 153 |
|
| 154 |
with gr.Row():
|
| 155 |
with gr.Column(scale=1):
|
| 156 |
image_input = gr.Image(type="pil", label="Input Image")
|
| 157 |
prompt_input = gr.Textbox(label="Prompt", placeholder="A dynamic scene from the image...", lines=2)
|
| 158 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="blurry, low quality", lines=1)
|
| 159 |
+
num_frames_slider = gr.Slider(MIN_FRAMES_MODEL, 32, value=8, step=8, label="Number of Frames (Start low to test)") # Limited to 32 max for free tier
|
| 160 |
preset_dropdown = gr.Dropdown(choices=list(DIMENSION_PRESETS.keys()), value="Custom (Default)", label="Output Preset")
|
| 161 |
+
steps_slider = gr.Slider(5, 20, value=10, step=5, label="Inference Steps (Lower = Faster)")
|
| 162 |
generate_btn = gr.Button("Generate Video", variant="primary")
|
| 163 |
|
| 164 |
with gr.Column(scale=1):
|
|
|
|
| 173 |
|
| 174 |
generate_btn.click(
|
| 175 |
fn=generate_video_only,
|
| 176 |
+
inputs=[image_input, prompt_input, negative_prompt_input, num_frames_slider, preset_dropdown, gr.State(7.5), steps_slider], # Added steps
|
| 177 |
outputs=[output_video, status_output]
|
| 178 |
)
|
| 179 |
|
|
|
|
| 181 |
gr.Examples(
|
| 182 |
examples=[
|
| 183 |
[
|
| 184 |
+
None, # No example image; user to upload
|
| 185 |
"The person in the image starts walking towards the camera with a smile.",
|
| 186 |
"static, blurry",
|
| 187 |
+
8,
|
| 188 |
+
"Custom (Default)"
|
| 189 |
]
|
| 190 |
],
|
| 191 |
inputs=[image_input, prompt_input, negative_prompt_input, num_frames_slider, preset_dropdown]
|