Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
-
import os # ← مضاف
|
| 4 |
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 5 |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 6 |
from diffusers.utils.export_utils import export_to_video
|
|
@@ -18,7 +18,8 @@ import aoti
|
|
| 18 |
# =========================================================
|
| 19 |
# MODEL CONFIGURATION
|
| 20 |
# =========================================================
|
| 21 |
-
MODEL_ID = "dream2589632147/Dream-wan2-2-faster-Pro"
|
|
|
|
| 22 |
|
| 23 |
MAX_DIM = 832
|
| 24 |
MIN_DIM = 480
|
|
@@ -26,40 +27,34 @@ SQUARE_DIM = 640
|
|
| 26 |
MULTIPLE_OF = 16
|
| 27 |
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 29 |
FIXED_FPS = 16
|
| 30 |
MIN_FRAMES_MODEL = 8
|
| 31 |
-
MAX_FRAMES_MODEL =
|
|
|
|
| 32 |
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
|
| 33 |
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
|
| 34 |
|
| 35 |
-
# =========================================================
|
| 36 |
-
# LOAD TRANSFORMERS (باستخدام HF_TOKEN)
|
| 37 |
-
# =========================================================
|
| 38 |
-
transformer = WanTransformer3DModel.from_pretrained(
|
| 39 |
-
MODEL_ID,
|
| 40 |
-
subfolder="transformer",
|
| 41 |
-
torch_dtype=torch.bfloat16,
|
| 42 |
-
device_map="cuda",
|
| 43 |
-
token=os.environ.get("HF_TOKEN") # ← يستخدم التوكن للوصول إلى النموذج
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
transformer_2 = WanTransformer3DModel.from_pretrained(
|
| 47 |
-
MODEL_ID,
|
| 48 |
-
subfolder="transformer_2",
|
| 49 |
-
torch_dtype=torch.bfloat16,
|
| 50 |
-
device_map="cuda",
|
| 51 |
-
token=os.environ.get("HF_TOKEN")
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
# =========================================================
|
| 55 |
# LOAD PIPELINE
|
| 56 |
# =========================================================
|
| 57 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 58 |
MODEL_ID,
|
| 59 |
-
transformer=
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
torch_dtype=torch.bfloat16,
|
| 62 |
-
token=os.environ.get("HF_TOKEN")
|
| 63 |
).to("cuda")
|
| 64 |
|
| 65 |
# =========================================================
|
|
@@ -113,6 +108,7 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
| 113 |
aspect_ratio = width / height
|
| 114 |
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
|
| 115 |
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
|
|
|
|
| 116 |
image_to_resize = image
|
| 117 |
|
| 118 |
if aspect_ratio > MAX_ASPECT_RATIO:
|
|
@@ -133,12 +129,14 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
| 133 |
|
| 134 |
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
|
| 135 |
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
|
|
|
|
| 136 |
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
|
| 137 |
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
|
|
|
|
| 138 |
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
|
| 139 |
|
| 140 |
# =========================================================
|
| 141 |
-
#
|
| 142 |
# =========================================================
|
| 143 |
def get_num_frames(duration_seconds: float):
|
| 144 |
return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
|
|
@@ -157,7 +155,7 @@ def get_duration(
|
|
| 157 |
return 10 + int(steps) * step_duration
|
| 158 |
|
| 159 |
# =========================================================
|
| 160 |
-
# MAIN FUNCTION
|
| 161 |
# =========================================================
|
| 162 |
@spaces.GPU(duration=get_duration)
|
| 163 |
def generate_video(
|
|
|
|
| 1 |
+
import os
|
| 2 |
import spaces
|
| 3 |
import torch
|
|
|
|
| 4 |
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 5 |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 6 |
from diffusers.utils.export_utils import export_to_video
|
|
|
|
| 18 |
# =========================================================
|
| 19 |
# MODEL CONFIGURATION
|
| 20 |
# =========================================================
|
| 21 |
+
MODEL_ID = "dream2589632147/Dream-wan2-2-faster-Pro" # المسار الجديد للنموذج
|
| 22 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # ضع توكن Hugging Face هنا إذا كان النموذج خاصًا
|
| 23 |
|
| 24 |
MAX_DIM = 832
|
| 25 |
MIN_DIM = 480
|
|
|
|
| 27 |
MULTIPLE_OF = 16
|
| 28 |
|
| 29 |
MAX_SEED = np.iinfo(np.int32).max
|
| 30 |
+
|
| 31 |
FIXED_FPS = 16
|
| 32 |
MIN_FRAMES_MODEL = 8
|
| 33 |
+
MAX_FRAMES_MODEL = 80
|
| 34 |
+
|
| 35 |
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
|
| 36 |
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# =========================================================
|
| 39 |
# LOAD PIPELINE
|
| 40 |
# =========================================================
|
| 41 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 42 |
MODEL_ID,
|
| 43 |
+
transformer=WanTransformer3DModel.from_pretrained(
|
| 44 |
+
MODEL_ID,
|
| 45 |
+
subfolder="transformer",
|
| 46 |
+
torch_dtype=torch.bfloat16,
|
| 47 |
+
device_map="cuda",
|
| 48 |
+
token=HF_TOKEN
|
| 49 |
+
),
|
| 50 |
+
transformer_2=WanTransformer3DModel.from_pretrained(
|
| 51 |
+
MODEL_ID,
|
| 52 |
+
subfolder="transformer_2",
|
| 53 |
+
torch_dtype=torch.bfloat16,
|
| 54 |
+
device_map="cuda",
|
| 55 |
+
token=HF_TOKEN
|
| 56 |
+
),
|
| 57 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 58 |
).to("cuda")
|
| 59 |
|
| 60 |
# =========================================================
|
|
|
|
| 108 |
aspect_ratio = width / height
|
| 109 |
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
|
| 110 |
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
|
| 111 |
+
|
| 112 |
image_to_resize = image
|
| 113 |
|
| 114 |
if aspect_ratio > MAX_ASPECT_RATIO:
|
|
|
|
| 129 |
|
| 130 |
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
|
| 131 |
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
|
| 132 |
+
|
| 133 |
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
|
| 134 |
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
|
| 135 |
+
|
| 136 |
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
|
| 137 |
|
| 138 |
# =========================================================
|
| 139 |
+
# UTILITY FUNCTIONS
|
| 140 |
# =========================================================
|
| 141 |
def get_num_frames(duration_seconds: float):
|
| 142 |
return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
|
|
|
|
| 155 |
return 10 + int(steps) * step_duration
|
| 156 |
|
| 157 |
# =========================================================
|
| 158 |
+
# MAIN GENERATION FUNCTION
|
| 159 |
# =========================================================
|
| 160 |
@spaces.GPU(duration=get_duration)
|
| 161 |
def generate_video(
|