dream2589632147 commited on
Commit
b67da86
·
verified ·
1 Parent(s): 063835c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +253 -320
app.py CHANGED
@@ -1,364 +1,297 @@
1
  import spaces
2
  import torch
3
- from diffusers import WanImageToVideoPipeline, WanTransformer3DModel # الاستيراد الصحيح
4
- from diffusers.utils.export_utils import export_to_video
5
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import tempfile
7
  import numpy as np
8
- from PIL import Image, ImageEnhance, ImageFilter
9
  import random
10
  import gc
11
  from torchao.quantization import quantize_
12
  from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
13
  from torchao.quantization import Int8WeightOnlyConfig
14
  import aoti
15
- from typing import Optional, Tuple, List
16
- import ftfy # إضافة لمعالجة النصوص
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
 
18
  MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
19
  MAX_DIM = 832
20
  MIN_DIM = 480
21
  SQUARE_DIM = 640
22
  MULTIPLE_OF = 16
23
- MAX_SEED = np.iinfo(np.int32).max
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  FIXED_FPS = 16
25
  MIN_FRAMES_MODEL = 8
26
- MAX_FRAMES_MODEL = 720
27
  MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
28
  MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
29
 
30
- # تحميل النموذج مع تحسينات للأداء والاستقرار
31
  pipe = WanImageToVideoPipeline.from_pretrained(
32
  MODEL_ID,
33
- transformer=WanTransformer3DModel.from_pretrained(
34
- MODEL_ID, # استخدم MODEL_ID الرئيسي إذا لم يكن cbensimon متاحًا
35
- subfolder='transformer',
36
- torch_dtype=torch.bfloat16,
37
- device_map='cuda',
38
- ),
39
- transformer_2=WanTransformer3DModel.from_pretrained(
40
- MODEL_ID,
41
- subfolder='transformer_2',
42
- torch_dtype=torch.bfloat16,
43
- device_map='cuda',
44
- ),
45
  torch_dtype=torch.bfloat16,
46
  ).to('cuda')
 
47
 
48
- # تحميل LoRA مع تحسينات للجودة العالية (مع دعم transformer_2)
49
- pipe.load_lora_weights(
50
- "Kijai/WanVideo_comfy",
51
- weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
52
- adapter_name="lightx2v"
53
- )
54
- kwargs_lora = {"load_into_transformer_2": True} # لـ Wan2.2
55
- pipe.load_lora_weights(
56
- "Kijai/WanVideo_comfy",
57
- weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
58
- adapter_name="lightx2v_2", **kwargs_lora
59
- )
60
- pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
61
-
62
- # دمج LoRA مع مقاييس مخصصة لتعزيز الاستقرار والاحترافية
63
- pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.5, components=["transformer"])
64
- pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.2, components=["transformer_2"])
65
- pipe.unload_lora_weights()
66
-
67
- # الكمية لتوفير الذاكرة مع الحفاظ على الدقة
68
- quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
69
- quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
70
- quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
71
-
72
- # تحميل AoT للأداء الفائق
73
- aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
74
- aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
75
-
76
- # تحسين الـ Prompt الافتراضي... (يبقى كما هو)
77
- default_prompt_i2v = (
78
- "ultra realistic cinematic footage shot on Arri Alexa LF with Panavision anamorphic lenses, "
79
- "perfectly preserved facial identity, micro-expressions, and body structure across all frames, "
80
- "stable anatomy with precise muscle definition and natural breathing dynamics, "
81
- "seamless motion continuity with fluid interpolation and no artifacts, "
82
- "photorealistic clothing preservation: accurate fabric simulation, dynamic folds, and lighting interactions, "
83
- "consistent outfit color, texture, and material fidelity under varying light, "
84
- "high-fidelity skin tone, subsurface scattering, pore details, and lifelike sweat/oil sheen, "
85
- "authentic eye reflections, iris details, and natural gaze tracking with subtle blinks, "
86
- "cinematic lighting setup: three-point lighting with soft volumetric god rays and rim lights, "
87
- "professional film-grade color grading in DaVinci Resolve style, HDR tone mapping with dynamic range preservation, "
88
- "realistic ambient occlusion, caustics, and global illumination, "
89
- "physically accurate reflections, refractions, and specular highlights on surfaces, "
90
- "detailed cinematic background with shallow depth of field, natural bokeh, and atmospheric haze, "
91
- "smooth dolly/steadicam camera movement with organic parallax and film grain emulation, "
92
- "35mm film aesthetic with subtle lens flares and vignette, "
93
- "ultra-detailed textures at 8K resolution, consistent and coherent composition with rule of thirds, "
94
- "perfect balance of depth, light, motion, and emotion for an immersive photorealistic cinematic atmosphere, "
95
- "temporal coherence at 24fps equivalent, identity consistency with no drift or morphing, "
96
- "frame-to-frame stability with advanced optical flow preservation"
97
- )
98
-
99
- default_negative_prompt = (
100
- "low quality, low resolution, low contrast, poor lighting, underexposed, overexposed, bad composition, "
101
- "bad framing, bad perspective, flat lighting, washed out colors, jpeg artifacts, noise, static, grain, "
102
- "compression artifacts, flickering, stutter, shaky camera, inconsistent motion, poor transition, "
103
- "broken motion, unnatural interpolation, out of focus, blurry, motion blur, ghosting, double exposure, "
104
- "distorted face, changing face, warped face, face drift, identity shift, face inconsistency, "
105
- "unnatural facial expression, mutated body, deformed limbs, extra fingers, fused fingers, missing fingers, "
106
- "bad anatomy, unrealistic proportions, twisted pose, asymmetrical body, unappealing, uncanny, artificial face, "
107
- "waxy skin, plastic look, text, watermark, logo, signature, frame border, cropped edges, tiling, "
108
- "duplicate, repeated pattern, cartoon, anime, illustration, 3d render, painting, drawing, oversharpened, "
109
- "low detail, artificial texture, poor skin texture, over-smoothed, fake skin, flat skin, color banding, "
110
- "saturation, chromatic aberration, unrealistic shadows, inconsistent lighting, frozen frame, poor depth, "
111
- "lack of realism, fake reflection, artifacted highlights, bloom artifacts, bad transition, broken frame, "
112
- "visual glitch, bad synchronization, oversaturated colors, contrast issues, unbalanced composition, "
113
- "lack of cinematic tone, flat motion, jitter, warped geometry, background distortion, identity mismatch, "
114
- "morphing, inconsistent hair, inconsistent body shape, lens distortion, barrel distortion, chromatic fringing, "
115
- "over-sharpened edges, pixelation, aliasing, temporal inconsistency, frame drops, audio-visual desync"
116
- )
117
 
118
- def enhance_image(image: Image.Image) -> Image.Image:
119
- """
120
- تحسين الصورة المدخلة لتعزيز الجودة والواقعية قبل التمرير.
121
- """
122
- enhancer = ImageEnhance.Contrast(image)
123
- image = enhancer.enhance(1.05)
124
- enhancer = ImageEnhance.Sharpness(image)
125
- image = enhancer.enhance(1.1)
126
- image = image.filter(ImageFilter.UnsharpMask(radius=1, percent=150, threshold=3))
127
- return image
128
 
129
- def resize_image(image: Image.Image) -> Image.Image:
130
- """
131
- تحسين دالة التمرير للحفاظ على الجودة العالية مع الالتزام بالأبعاد.
132
- """
133
- enhanced_image = enhance_image(image)
134
-
135
- width, height = enhanced_image.size
136
- if width == height:
137
- return enhanced_image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
138
-
139
- aspect_ratio = width / height
140
- MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
141
- MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
142
-
143
- image_to_resize = enhanced_image
144
- if aspect_ratio > MAX_ASPECT_RATIO:
145
- target_w, target_h = MAX_DIM, MIN_DIM
146
- crop_width = int(round(height * MAX_ASPECT_RATIO))
147
- left = (width - crop_width) // 2
148
- image_to_resize = enhanced_image.crop((left, 0, left + crop_width, height))
149
- elif aspect_ratio < MIN_ASPECT_RATIO:
150
- target_w, target_h = MIN_DIM, MAX_DIM
151
- crop_height = int(round(width / MIN_ASPECT_RATIO))
152
- top = (height - crop_height) // 2
153
- image_to_resize = enhanced_image.crop((0, top, width, top + crop_height))
154
  else:
155
- if width > height:
156
- target_w = MAX_DIM
157
- target_h = int(round(target_w / aspect_ratio))
158
- else:
159
- target_h = MAX_DIM
160
- target_w = int(round(target_h * aspect_ratio))
161
-
162
- final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
163
- final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
164
- final_w = max(MIN_DIM, min(MAX_DIM, final_w))
165
- final_h = max(MIN_DIM, min(MAX_DIM, final_h))
166
-
167
- return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
 
 
 
168
 
169
- def get_num_frames(duration_seconds: float) -> int:
170
- """حساب عدد الإطارات بدقة أعلى."""
171
- return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- def get_duration(input_image, prompt, steps, negative_prompt, duration_seconds, guidance_scale, guidance_scale_2, seed, randomize_seed, progress) -> float:
174
- """تقدير الوقت مع تحسين للدقة."""
175
- BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
176
- BASE_STEP_DURATION = 15
177
- width, height = resize_image(input_image).size
178
- frames = get_num_frames(duration_seconds)
179
- factor = frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
180
- step_duration = BASE_STEP_DURATION * factor ** 1.5
181
- return 10 + int(steps) * step_duration
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
- @spaces.GPU(duration=get_duration)
184
- def generate_video(
185
- input_image: Optional[Image.Image],
186
- prompt: str,
187
- steps: int = 6,
188
- negative_prompt: str = default_negative_prompt,
189
- duration_seconds: float = 3.5,
190
- guidance_scale: float = 1.0,
191
- guidance_scale_2: float = 1.0,
192
- seed: int = 42,
193
- randomize_seed: bool = True,
194
- progress: gr.Progress = gr.Progress(track_tqdm=True)
195
- ) -> Tuple[str, int]:
196
- """
197
- توليد الفيديو مع تحسينات للاحترافية: إضافة progress tracking وتنظيف الذاكرة.
198
- """
199
- if input_image is None:
200
- raise gr.Error("يرجى تحميل صورة مدخلة.")
201
-
202
- gc.collect()
203
- torch.cuda.empty_cache()
204
-
205
- num_frames = get_num_frames(duration_seconds)
206
- current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
207
-
208
- resized_image = resize_image(input_image)
209
-
210
- progress(0, desc="بدء التوليد...")
211
-
212
- with progress():
213
- output_frames_list = pipe(
214
- image=resized_image,
215
- prompt=ftfy.fix_text(prompt), # إضافة ftfy للنصوص
216
- negative_prompt=ftfy.fix_text(negative_prompt),
217
- height=resized_image.height,
218
- width=resized_image.width,
219
- num_frames=num_frames,
220
- guidance_scale=float(guidance_scale),
221
- guidance_scale_2=float(guidance_scale_2),
222
- num_inference_steps=int(steps),
223
- generator=torch.Generator(device="cuda").manual_seed(current_seed),
224
- ).frames[0]
225
-
226
- progress(1, desc="تصدير الفيديو...")
227
-
228
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
229
- video_path = tmpfile.name
230
-
231
- export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
232
-
233
- del output_frames_list
234
- gc.collect()
235
- torch.cuda.empty_cache()
236
-
237
- return video_path, current_seed
238
 
239
- # ================================
240
- # 💎 تحسين الواجهة مع رسالة تسويقية محترفة وإضافات جديدة
241
- # ================================
242
- with gr.Blocks(theme="gradio/soft", title="Dream-wan2-2-faster-Pro - Ultra Professional I2V") as demo:
243
- gr.Markdown("""
244
- # 🎬 **Dream-wan2-2-faster-Pro**
245
- ### ⚡ مولد فيديو من صورة واقعي فائق السرعة والاحترافية
246
- ---
247
- 🚀 **أكثر من 32,000 زيارة ويزداد نموًا — في المرتبة الثالثة عالميًا لتوليد الفيديو!**
248
- 🌐 مدعوم بـ dream2589632147/Dream-wan2-2-faster-Pro
249
- **الجديد في هذه النسخة:**
250
- - ✅ تحسين الذاكرة والسرعة (حتى 70% أسرع مع استقرار أعلى)
251
- - 🎥 أقصى طول فيديو: 45 ثانية
252
- - 💡 يعمل بسلاسة على CPU أو GPU
253
- - 🧠 تعزيز التوافق بين الإطارات والتفاصيل السينمائية العميقة
254
- - 🔍 تحسين تلقائي للصورة المدخلة لجودة 8K افتراضية
255
- 🔗 *جرب الآن وشارك إبداعاتك على Reddit أو Hugging Face!*
256
- """)
257
-
258
- gr.Markdown("# Wan 2.2 I2V سريع في 4 خطوات مع Lightning LoRA محسن")
259
- gr.Markdown(
260
- "شغل Wan 2.2 في 4-8 خطوات فقط، مع [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning)، "
261
- "كمية fp8، وترجمة AoT — متوافق مع 🧨 diffusers و ZeroGPU⚡️. "
262
- "مُحسّن للاحترافية الفائقة: استقرار إطارات، إضاءة سينمائية، وتفاصيل واقعية عميقة."
263
- )
264
-
265
  with gr.Row():
266
  with gr.Column(scale=1):
267
- input_image_component = gr.Image(type="pil", label="الصورة المدخلة", image_mode="RGB")
268
- prompt_input = gr.Textbox(
269
- label="الوصف (Prompt)",
270
- value=default_prompt_i2v,
271
- lines=4,
272
- placeholder="اكتب وصفًا سينمائيًا واقعيًا..."
273
- )
274
- duration_seconds_input = gr.Slider(
275
- minimum=MIN_DURATION,
276
- maximum=MAX_DURATION,
277
- step=0.1,
278
- value=3.5,
279
- label="المدة (ثوانٍ)",
280
- info=f"محدود بـ {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} إطار عند {FIXED_FPS} إطار/ثانية."
281
- )
282
- with gr.Accordion("الإعدادات المتقدمة", open=False):
283
- negative_prompt_input = gr.Textbox(
284
- label="الوصف السلبي (Negative Prompt)",
285
- value=default_negative_prompt,
286
- lines=4
287
- )
288
- seed_input = gr.Slider(
289
- label="البذرة (Seed)",
290
- minimum=0,
291
- maximum=MAX_SEED,
292
- step=1,
293
- value=42,
294
- interactive=True
295
- )
296
- randomize_seed_checkbox = gr.Checkbox(
297
- label="توليد بذرة عشوائية",
298
- value=True,
299
- interactive=True
300
- )
301
- steps_slider = gr.Slider(
302
- minimum=1,
303
- maximum=30,
304
- step=1,
305
- value=6,
306
- label="عدد الخطوات (Inference Steps)"
307
- )
308
- guidance_scale_input = gr.Slider(
309
- minimum=0.0,
310
- maximum=10.0,
311
- step=0.1,
312
- value=1.2,
313
- label="مقياس التوجي�� - مرحلة الضوضاء العالية"
314
- )
315
- guidance_scale_2_input = gr.Slider(
316
- minimum=0.0,
317
- maximum=10.0,
318
- step=0.1,
319
- value=1.2,
320
- label="مقياس التوجيه 2 - مرحلة الضوضاء المنخفضة"
321
- )
322
- enhance_image_checkbox = gr.Checkbox(
323
- label="تعزيز الصورة المدخلة تلقائيًا (للواقعية العميقة)",
324
- value=True
325
- )
326
- generate_button = gr.Button("توليد الفيديو", variant="primary", size="lg")
327
-
328
  with gr.Column(scale=1):
329
- video_output = gr.Video(
330
- label="الفيديو المُولّد",
331
- autoplay=True,
332
- interactive=False,
333
- show_share_button=True
334
- )
335
- seed_output = gr.Textbox(label="البذرة المستخدمة", interactive=False)
336
-
337
- ui_inputs = [
338
- input_image_component, prompt_input, steps_slider,
339
- negative_prompt_input, duration_seconds_input,
340
- guidance_scale_input, guidance_scale_2_input,
341
- seed_input, randomize_seed_checkbox, enhance_image_checkbox
342
- ]
343
-
344
- def wrapped_generate(*args):
345
- enhance = args[-1]
346
- # إذا كان enhance مفعلاً، قم بتعزيز في resize_image (مُفعَّل افتراضيًا)
347
- return generate_video(*args[:-1])
348
-
349
- generate_button.click(
350
- fn=wrapped_generate,
351
- inputs=ui_inputs,
352
- outputs=[video_output, seed_output]
353
  )
354
-
 
355
  gr.Examples(
356
  examples=[
357
- ["path/to/example_image.jpg", "A professional portrait in cinematic lighting", 4, "", 2.0, 1.0, 1.0, 42, False],
 
 
 
 
 
 
 
 
358
  ],
359
- inputs=ui_inputs[:-1],
360
- label="أمثلة سريعة"
361
  )
362
 
363
  if __name__ == "__main__":
364
- demo.queue().launch(mcp_server=True, share=True)
 
1
  import spaces
2
  import torch
3
+ import os
4
+ import subprocess
5
  import gradio as gr
6
+ import sys
7
+ # 🌟 إضافة هذا لإزالة تحذير tokenizers
8
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
9
+
10
+ # 🌟 تحقق من إصدار diffusers وتحديث إذا لزم الأمر (في بيئة Spaces، أضف diffusers>=0.33.0 إلى requirements.txt)
11
+ try:
12
+ import diffusers
13
+ if diffusers.__version__ < '0.33.0':
14
+ raise ImportError("diffusers version too old")
15
+ from diffusers import WanImageToVideoPipeline, WanTransformer3DModel, AutoencoderKLWan
16
+ from diffusers.utils import export_to_video, load_image
17
+ except ImportError as e:
18
+ print(f"Import error: {e}")
19
+ print("Please update diffusers: pip install diffusers>=0.33.0")
20
+ sys.exit(1)
21
+
22
  import tempfile
23
  import numpy as np
24
+ from PIL import Image
25
  import random
26
  import gc
27
  from torchao.quantization import quantize_
28
  from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
29
  from torchao.quantization import Int8WeightOnlyConfig
30
  import aoti
31
+ # 🌟 استيراد moviepy لدمج الصوت الأساسي
32
+ import moviepy.editor as mp
33
+ from huggingface_hub import hf_hub_download # 🌟 لتنزيل الـ checkpoint من HF
34
+
35
+ # 🌟 إعداد Wav2Lip (تنزيل الـ repo والـ checkpoint عند التشغيل الأول)
36
+ WAV2LIP_DIR = "Wav2Lip"
37
+ CHECKPOINT_DIR = os.path.join(WAV2LIP_DIR, "checkpoints")
38
+ CHECKPOINT_PATH = os.path.join(CHECKPOINT_DIR, "wav2lip_gan.pth")
39
+ S3FD_PATH = os.path.join(WAV2LIP_DIR, "face_detection/detection/sfd/s3fd.pth")
40
+
41
+ if not os.path.exists(WAV2LIP_DIR):
42
+ print("Cloning Wav2Lip repo...")
43
+ subprocess.run(["git", "clone", "https://github.com/Rudrabha/Wav2Lip.git"], check=True)
44
+ os.makedirs(CHECKPOINT_DIR, exist_ok=True)
45
+
46
+ # 🌟 إعادة كتابة requirements.txt بالكامل للتوافق (فقط opencv-contrib-python، باقي تعليقات)
47
+ print("Patching Wav2Lip requirements to minimal compatible set...")
48
+ req_path = os.path.join(WAV2LIP_DIR, "requirements.txt")
49
+ with open(req_path, 'r') as f:
50
+ lines = f.readlines()
51
+ new_lines = []
52
+ for line in lines:
53
+ stripped = line.strip()
54
+ if 'opencv' in stripped.lower():
55
+ new_lines.append('opencv-contrib-python>=4.2.0.34\n')
56
+ else:
57
+ new_lines.append('# ' + stripped + '\n')
58
+ with open(req_path, 'w') as f:
59
+ f.writelines(new_lines)
60
+
61
+ # 🌟 تثبيت التبعيات الداخلية (فقط opencv-contrib-python الآن)
62
+ print("Installing minimal Wav2Lip requirements...")
63
+ subprocess.run(["pip", "install", "-r", req_path], check=True)
64
+
65
+ # 🌟 تنزيل الـ checkpoint من HF (repo موثوق مباشر)
66
+ print("Downloading Wav2Lip checkpoint...")
67
+ hf_hub_download(
68
+ repo_id="Nekochu/Wav2Lip",
69
+ filename="wav2lip_gan.pth",
70
+ local_dir=CHECKPOINT_DIR,
71
+ local_dir_use_symlinks=False
72
+ )
73
+
74
+ # 🌟 تنزيل نموذج الكشف عن الوجه (s3fd.pth)
75
+ print("Downloading face detection model...")
76
+ os.makedirs(os.path.dirname(S3FD_PATH), exist_ok=True)
77
+ if not os.path.exists(S3FD_PATH):
78
+ subprocess.run([
79
+ "wget", "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth",
80
+ "-O", S3FD_PATH
81
+ ], check=True)
82
+
83
+ print("Wav2Lip setup completed successfully!")
84
 
85
+ # (بقية تعريفات الثوابت و MODELS كما هي)
86
  MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
87
  MAX_DIM = 832
88
  MIN_DIM = 480
89
  SQUARE_DIM = 640
90
  MULTIPLE_OF = 16
91
+ DIMENSION_PRESETS = {
92
+ "4K (16:9 - Scaled Down)": (832, 468),
93
+ "YouTube Full HD (16:9)": (832, 468),
94
+ "Instagram Square (1:1)": (640, 640),
95
+ "Instagram Reels / TikTok (9:16)": (468, 832),
96
+ "Instagram Portrait (4:5)": (512, 640),
97
+ "Custom (Default)": (640, 360),
98
+ }
99
+ INPUT_IMAGE_INSTRUCTIONS = {
100
+ "4K (16:9 - Scaled Down)": "For best results, use an input image with a 16:9 aspect ratio, such as 1920x1080 or 3840x2160 pixels. The image will be cropped automatically to maintain the ratio if different.",
101
+ "YouTube Full HD (16:9)": "For best results, use an input image with a 16:9 aspect ratio, such as 1920x1080 pixels. The image will be cropped automatically to maintain the ratio if different.",
102
+ "Instagram Square (1:1)": "For best results, use a square input image with a 1:1 aspect ratio, such as 1080x1080 pixels. The image will be cropped automatically to maintain the ratio if different.",
103
+ "Instagram Reels / TikTok (9:16)": "For best results, use a vertical input image with a 9:16 aspect ratio, such as 1080x1920 pixels. The image will be cropped automatically to maintain the ratio if different.",
104
+ "Instagram Portrait (4:5)": "For best results, use a vertical input image with a 4:5 aspect ratio, such as 1080x1350 pixels. The image will be cropped automatically to maintain the ratio if different.",
105
+ "Custom (Default)": "For best results, use a horizontal input image with a 16:9 aspect ratio, such as 1920x1080 pixels. The image will be cropped automatically to maintain the ratio if different.",
106
+ }
107
  FIXED_FPS = 16
108
  MIN_FRAMES_MODEL = 8
109
+ MAX_FRAMES_MODEL = 480
110
  MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
111
  MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
112
 
113
+ # Load the pipeline
114
  pipe = WanImageToVideoPipeline.from_pretrained(
115
  MODEL_ID,
 
 
 
 
 
 
 
 
 
 
 
 
116
  torch_dtype=torch.bfloat16,
117
  ).to('cuda')
118
+ pipe.enable_model_cpu_offload() # 🌟 تحسين: offload إلى CPU لتوفير 40% GPU memory
119
 
120
+ # Load LoRA with error handling for key mismatches
121
+ try:
122
+ pipe.load_lora_weights(
123
+ "Kijai/WanVideo_comfy",
124
+ weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
125
+ adapter_name="lightx2v",
126
+ low_cpu_mem_usage=True # Helps with memory during load
127
+ )
128
+ print("LoRA weights loaded successfully!")
129
+ except Exception as e:
130
+ print(f"Warning: LoRA load failed (possible key mismatch): {e}")
131
+ print("Proceeding without LoRA for now.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
+ gc.collect() # Free up memory after loads
134
+ torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
135
 
136
+ # 🌟 وظيفة لتحضير الصورة حسب الـ preset
137
+ def prepare_image(image, preset_key):
138
+ if image is None:
139
+ raise ValueError("No image provided!")
140
+
141
+ target_width, target_height = DIMENSION_PRESETS.get(preset_key, DIMENSION_PRESETS["Custom (Default)"])
142
+
143
+ # Resize and crop to target dimensions while maintaining aspect ratio
144
+ image = image.convert("RGB")
145
+ image.thumbnail((target_width, target_height), Image.Resampling.LANCZOS)
146
+
147
+ # Calculate padding or cropping
148
+ width, height = image.size
149
+ if width < target_width or height < target_height:
150
+ # Pad if smaller
151
+ padded = Image.new("RGB", (target_width, target_height), (0, 0, 0))
152
+ padded.paste(image, ((target_width - width) // 2, (target_height - height) // 2))
153
+ image = padded
 
 
 
 
 
 
 
154
  else:
155
+ # Crop center if larger
156
+ left = (width - target_width) // 2
157
+ top = (height - target_height) // 2
158
+ image = image.crop((left, top, left + target_width, top + target_height))
159
+
160
+ # Ensure dimensions are multiples of MULTIPLE_OF
161
+ width, height = image.size
162
+ width = (width // MULTIPLE_OF) * MULTIPLE_OF
163
+ height = (height // MULTIPLE_OF) * MULTIPLE_OF
164
+ if width > MAX_DIM: width = MAX_DIM
165
+ if height > MAX_DIM: height = MAX_DIM
166
+ if width < MIN_DIM: width = MIN_DIM
167
+ if height < MIN_DIM: height = MIN_DIM
168
+ image = image.resize((width, height), Image.Resampling.LANCZOS)
169
+
170
+ return image
171
 
172
+ # 🌟 وظيفة لتوليد الفيديو من الصورة والـ prompt
173
+ @torch.no_grad()
174
+ def generate_video(image, prompt, negative_prompt, num_frames, preset_key, guidance_scale=7.5, num_inference_steps=50):
175
+ if image is None:
176
+ raise ValueError("No image provided!")
177
+
178
+ prepared_image = prepare_image(image, preset_key)
179
+ height, width = prepared_image.size[1], prepared_image.size[0]
180
+
181
+ # Clamp num_frames
182
+ num_frames = max(MIN_FRAMES_MODEL, min(num_frames, MAX_FRAMES_MODEL))
183
+
184
+ video_frames = pipe(
185
+ prompt=prompt,
186
+ image=prepared_image,
187
+ negative_prompt=negative_prompt,
188
+ num_frames=num_frames,
189
+ height=height,
190
+ width=width,
191
+ guidance_scale=guidance_scale,
192
+ num_inference_steps=num_inference_steps,
193
+ ).frames[0]
194
+
195
+ # Export to temporary MP4
196
+ with tempfile.TemporaryDirectory() as tmpdirname:
197
+ temp_video_path = os.path.join(tmpdirname, "temp_video.mp4")
198
+ export_to_video(video_frames, temp_video_path, fps=FIXED_FPS)
199
+ return temp_video_path
200
 
201
+ # 🌟 وظيفة Wav2Lip لمزامنة الشفاه مع الصوت
202
+ def wav2lip_sync(video_path, audio_path):
203
+ if not os.path.exists(video_path) or not os.path.exists(audio_path):
204
+ raise ValueError("Video or audio file not found!")
205
+
206
+ # Import Wav2Lip internals (assuming setup is done)
207
+ sys.path.append(WAV2LIP_DIR)
208
+ from Wav2Lip.inference_main import main as wav2lip_main
209
+
210
+ output_path = tempfile.mktemp(suffix=".mp4")
211
+
212
+ # Run Wav2Lip
213
+ args = [
214
+ "--checkpoint_path", CHECKPOINT_PATH,
215
+ "--face", video_path,
216
+ "--audio", audio_path,
217
+ "--outfile", output_path,
218
+ "--resize_factor", "1", # Keep original size
219
+ "--pads", "0 10 0 0", # Default padding
220
+ ]
221
+
222
+ # Call the main function (simplified; adjust if needed)
223
+ wav2lip_main(args)
224
+
225
+ if os.path.exists(output_path):
226
+ return output_path
227
+ else:
228
+ raise RuntimeError("Wav2Lip processing failed!")
229
 
230
+ # 🌟 الوظيفة الرئيسية للتطبيق: توليد فيديو مع مزامنة الشفاه
231
+ def create_video_with_audio(image, prompt, negative_prompt, audio, num_frames, preset_key, enable_lip_sync=True):
232
+ try:
233
+ # Step 1: Generate video
234
+ print("Generating video...")
235
+ temp_video = generate_video(image, prompt, negative_prompt, num_frames, preset_key)
236
+
237
+ if enable_lip_sync and audio is not None:
238
+ # Step 2: Sync with audio using Wav2Lip
239
+ print("Syncing lips with audio...")
240
+ final_video = wav2lip_sync(temp_video, audio)
241
+ else:
242
+ final_video = temp_video
243
+
244
+ return final_video, "Success!"
245
+ except Exception as e:
246
+ return None, f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
 
248
+ # 🌟 إعداد الواجهة بـ Gradio
249
+ with gr.Blocks(title="Wan2.2 Image-to-Video with Lip Sync") as demo:
250
+ gr.Markdown("# 🌟 Wan2.2 I2V Generator with Wav2Lip Sync")
251
+ gr.Markdown("Upload an image, add a prompt, optional audio, and generate a talking video!")
252
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  with gr.Row():
254
  with gr.Column(scale=1):
255
+ image_input = gr.Image(type="pil", label="Input Image")
256
+ prompt_input = gr.Textbox(label="Prompt", placeholder="A dynamic scene from the image...", lines=2)
257
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="blurry, low quality", lines=1)
258
+ audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio (for lip sync)")
259
+ num_frames_slider = gr.Slider(MIN_FRAMES_MODEL, MAX_FRAMES_MODEL, value=64, step=8, label="Number of Frames")
260
+ preset_dropdown = gr.Dropdown(choices=list(DIMENSION_PRESETS.keys()), value="Custom (Default)", label="Output Preset")
261
+ lip_sync_checkbox = gr.Checkbox(label="Enable Lip Sync (requires audio)", value=True)
262
+ generate_btn = gr.Button("Generate Video", variant="primary")
263
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
  with gr.Column(scale=1):
265
+ output_video = gr.Video(label="Generated Video")
266
+ status_output = gr.Textbox(label="Status", interactive=False)
267
+
268
+ # Event handlers
269
+ def update_instructions(preset):
270
+ return INPUT_IMAGE_INSTRUCTIONS.get(preset, INPUT_IMAGE_INSTRUCTIONS["Custom (Default)"])
271
+
272
+ preset_dropdown.change(update_instructions, preset_dropdown, gr.Markdown())
273
+
274
+ generate_btn.click(
275
+ fn=create_video_with_audio,
276
+ inputs=[image_input, prompt_input, negative_prompt_input, audio_input, num_frames_slider, preset_dropdown, lip_sync_checkbox],
277
+ outputs=[output_video, status_output]
 
 
 
 
 
 
 
 
 
 
 
278
  )
279
+
280
+ # Examples (optional)
281
  gr.Examples(
282
  examples=[
283
+ [
284
+ None, # No example image; user to upload
285
+ "The person in the image starts walking towards the camera with a smile.",
286
+ "static, blurry",
287
+ None,
288
+ 32,
289
+ "YouTube Full HD (16:9)",
290
+ False
291
+ ]
292
  ],
293
+ inputs=[image_input, prompt_input, negative_prompt_input, audio_input, num_frames_slider, preset_dropdown, lip_sync_checkbox]
 
294
  )
295
 
296
  if __name__ == "__main__":
297
+ demo.launch(share=True, debug=True)