File size: 5,843 Bytes
f9871be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc834d
f9871be
3fc834d
 
f9871be
 
3fc834d
f9871be
3fc834d
f9871be
3fc834d
 
 
f9871be
 
 
 
 
3fc834d
f9871be
3fc834d
f9871be
3fc834d
 
f9871be
 
 
 
 
 
 
 
 
 
 
 
3fc834d
f9871be
 
 
3fc834d
 
 
 
f9871be
 
 
 
3fc834d
 
f9871be
 
3fc834d
 
 
 
 
 
 
 
 
 
f9871be
3fc834d
f9871be
 
 
3fc834d
f9871be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc834d
 
f9871be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc834d
f9871be
3fc834d
f9871be
 
3fc834d
f9871be
3fc834d
 
 
 
 
 
 
f9871be
3fc834d
 
 
 
 
f9871be
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# rag.py
import os
import json
import pickle
import logging
from typing import List, Tuple, Optional

import numpy as np
import faiss
from sentence_transformers import SentenceTransformer

from config import VECTORSTORE_DIR, EMBEDDING_MODEL

log = logging.getLogger(__name__)


class RAGAgent:
    """

    Loads a FAISS index + metadata from VECTORSTORE_DIR (config).

    Provides retrieve(query, k) -> (contexts: List[str], sources: List[dict])

    """

    def __init__(self, vectorstore_dir: Optional[str] = None, embedding_model: Optional[str] = None):
        self.vectorstore_dir = vectorstore_dir or str(VECTORSTORE_DIR)
        self.embedding_model_name = embedding_model or EMBEDDING_MODEL
        self.index: Optional[faiss.Index] = None
        self.metadata: Optional[List[dict]] = None
        self._embedder: Optional[SentenceTransformer] = None
        self._loaded = False

    def _find_index_file(self) -> Optional[str]:
        if not os.path.isdir(self.vectorstore_dir):
            log.warning("Vectorstore dir not found: %s", self.vectorstore_dir)
            return None

        for fname in os.listdir(self.vectorstore_dir):
            if fname.endswith((".faiss", ".index", ".bin")) or fname.startswith("index"):
                return os.path.join(self.vectorstore_dir, fname)
        return None

    def _find_meta_file(self) -> Optional[str]:
        if not os.path.isdir(self.vectorstore_dir):
            return None

        for candidate in ("index.pkl", "metadata.pkl", "index_meta.pkl", "metadata.json", "index.json"):
            p = os.path.join(self.vectorstore_dir, candidate)
            if os.path.exists(p):
                return p

        for fname in os.listdir(self.vectorstore_dir):
            if fname.endswith(".pkl") or fname.endswith(".json"):
                return os.path.join(self.vectorstore_dir, fname)

        return None

    @property
    def embedder(self) -> SentenceTransformer:
        if self._embedder is None:
            log.info("Loading embedder: %s", self.embedding_model_name)
            self._embedder = SentenceTransformer(self.embedding_model_name)
        return self._embedder

    def load(self) -> None:
        """Load index and metadata into memory (idempotent)."""
        if self._loaded:
            return

        idx_path = self._find_index_file()
        meta_path = self._find_meta_file()

        if not idx_path or not meta_path:
            log.warning("No index/metadata found in %s — retrieval disabled.", self.vectorstore_dir)
            return

        log.info("Loading FAISS index from: %s", idx_path)
        try:
            self.index = faiss.read_index(idx_path)
        except Exception as e:
            log.error("Failed to read FAISS index: %s", e)
            return

        log.info("Loading metadata from: %s", meta_path)
        try:
            if meta_path.endswith(".json"):
                with open(meta_path, "r", encoding="utf-8") as f:
                    self.metadata = json.load(f)
            else:
                with open(meta_path, "rb") as f:
                    self.metadata = pickle.load(f)
        except Exception as e:
            log.error("Failed to read metadata: %s", e)
            return

        # Normalize metadata type
        if not isinstance(self.metadata, list):
            if isinstance(self.metadata, dict):
                try:
                    self.metadata = [self.metadata[k] for k in sorted(self.metadata.keys())]
                except Exception:
                    self.metadata = list(self.metadata.values())
            else:
                self.metadata = list(self.metadata)

        log.info("Loaded index and metadata: metadata length=%d", len(self.metadata))
        self._loaded = True

    def retrieve(self, query: str, k: int = 3) -> Tuple[List[str], List[dict]]:
        """

        Return two lists:

        - contexts: [str, ...] top-k chunk texts (may be fewer)

        - sources: [ {meta..., "score": float}, ... ]

        """
        if not self._loaded:
            self.load()

        if self.index is None or self.metadata is None:
            return [], []

        q_emb = self.embedder.encode([query], convert_to_numpy=True).astype("float32")

        # try normalize if index uses normalized vectors
        try:
            faiss.normalize_L2(q_emb)
        except Exception:
            pass

        try:
            D, I = self.index.search(q_emb, k)
        except Exception as e:
            log.warning("FAISS search error: %s", e)
            return [], []

        if I is None or D is None:
            return [], []

        indices = np.array(I).reshape(-1)[:k].tolist()
        scores = np.array(D).reshape(-1)[:k].tolist()

        contexts, sources = [], []
        for idx, score in zip(indices, scores):
            if int(idx) < 0 or idx >= len(self.metadata):
                continue

            meta = self.metadata[int(idx)]
            text = None

            if isinstance(meta, dict):
                for key in ("text", "page_content", "content", "chunk_text", "source_text"):
                    if key in meta and meta[key]:
                        text = meta[key]
                        break
                if text is None and "metadata" in meta and isinstance(meta["metadata"], dict):
                    text = meta["metadata"].get("text") or meta["metadata"].get("page_content")
            elif isinstance(meta, str):
                text = meta

            if text is None:
                text = str(meta)

            contexts.append(text)
            sources.append({"meta": meta, "score": float(score)})

        return contexts, sources