Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,6 @@ import os
|
|
| 5 |
|
| 6 |
# π§ CPU Optimization Suite
|
| 7 |
os.environ["OMP_NUM_THREADS"] = "4"
|
| 8 |
-
os.environ["MKL_NUM_THREADS"] = "4"
|
| 9 |
torch.set_num_threads(4)
|
| 10 |
torch.manual_seed(42)
|
| 11 |
|
|
@@ -22,16 +21,31 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
| 22 |
|
| 23 |
# β
Add pad_token if missing (required for batched generation)
|
| 24 |
if tokenizer.pad_token is None:
|
|
|
|
| 25 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
# π§
|
| 29 |
-
model =
|
| 30 |
-
MODEL_NAME,
|
| 31 |
-
torch_dtype=torch.float32,
|
| 32 |
-
low_cpu_mem_usage=True,
|
| 33 |
-
cache_dir=cache_dir
|
| 34 |
-
).eval()
|
| 35 |
|
| 36 |
def generate_response(prompt, max_new_tokens=128, temperature=0.7, top_p=0.9, num_sequences=1):
|
| 37 |
"""Optimized for 18GB CPU with strict memory control"""
|
|
@@ -54,7 +68,7 @@ def generate_response(prompt, max_new_tokens=128, temperature=0.7, top_p=0.9, nu
|
|
| 54 |
top_p=float(top_p),
|
| 55 |
do_sample=True,
|
| 56 |
num_return_sequences=int(num_sequences),
|
| 57 |
-
pad_token_id=tokenizer.
|
| 58 |
eos_token_id=tokenizer.eos_token_id
|
| 59 |
)
|
| 60 |
|
|
|
|
| 5 |
|
| 6 |
# π§ CPU Optimization Suite
|
| 7 |
os.environ["OMP_NUM_THREADS"] = "4"
|
|
|
|
| 8 |
torch.set_num_threads(4)
|
| 9 |
torch.manual_seed(42)
|
| 10 |
|
|
|
|
| 21 |
|
| 22 |
# β
Add pad_token if missing (required for batched generation)
|
| 23 |
if tokenizer.pad_token is None:
|
| 24 |
+
# First add special token to tokenizer
|
| 25 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 26 |
+
|
| 27 |
+
# Then resize model embeddings to accommodate new token
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
MODEL_NAME,
|
| 30 |
+
torch_dtype=torch.float32,
|
| 31 |
+
low_cpu_mem_usage=True,
|
| 32 |
+
cache_dir=cache_dir
|
| 33 |
+
)
|
| 34 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 35 |
+
|
| 36 |
+
# Finally set pad_token
|
| 37 |
+
tokenizer.pad_token = tokenizer.eos_token or tokenizer.cls_token or '[PAD]'
|
| 38 |
+
else:
|
| 39 |
+
# Load model normally if pad_token exists
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
MODEL_NAME,
|
| 42 |
+
torch_dtype=torch.float32,
|
| 43 |
+
low_cpu_mem_usage=True,
|
| 44 |
+
cache_dir=cache_dir
|
| 45 |
+
)
|
| 46 |
|
| 47 |
+
# π§ Final model setup
|
| 48 |
+
model = model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def generate_response(prompt, max_new_tokens=128, temperature=0.7, top_p=0.9, num_sequences=1):
|
| 51 |
"""Optimized for 18GB CPU with strict memory control"""
|
|
|
|
| 68 |
top_p=float(top_p),
|
| 69 |
do_sample=True,
|
| 70 |
num_return_sequences=int(num_sequences),
|
| 71 |
+
pad_token_id=tokenizer.convert_tokens_to_ids(tokenizer.pad_token),
|
| 72 |
eos_token_id=tokenizer.eos_token_id
|
| 73 |
)
|
| 74 |
|