Spaces:
Paused
Paused
Update model.py
Browse files
model.py
CHANGED
|
@@ -6,44 +6,53 @@ from transformers import AutoModel
|
|
| 6 |
class DeBERTaLSTMClassifier(nn.Module):
|
| 7 |
def __init__(self, hidden_dim=128, num_labels=2):
|
| 8 |
super().__init__()
|
| 9 |
-
|
| 10 |
self.deberta = AutoModel.from_pretrained("microsoft/deberta-base")
|
|
|
|
|
|
|
| 11 |
for param in self.deberta.parameters():
|
| 12 |
-
param.requires_grad = False
|
| 13 |
-
|
| 14 |
self.lstm = nn.LSTM(
|
| 15 |
input_size=self.deberta.config.hidden_size,
|
| 16 |
hidden_size=hidden_dim,
|
| 17 |
batch_first=True,
|
| 18 |
bidirectional=True
|
| 19 |
)
|
| 20 |
-
|
| 21 |
-
self.fc = nn.Linear(hidden_dim * 2, num_labels)
|
| 22 |
|
| 23 |
-
# Attention
|
| 24 |
self.attention = nn.Linear(hidden_dim * 2, 1)
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def forward(self, input_ids, attention_mask, return_attention=False):
|
|
|
|
| 27 |
with torch.no_grad():
|
| 28 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask, output_attentions=True)
|
| 29 |
-
|
| 30 |
-
lstm_out, _ = self.lstm(outputs.last_hidden_state) # shape: [batch, seq_len, hidden*2]
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if return_attention:
|
| 33 |
-
|
| 34 |
-
attention_weights = self.attention(lstm_out) # [batch, seq_len, 1]
|
| 35 |
-
attention_weights = F.softmax(attention_weights.squeeze(-1), dim=-1) # [batch, seq_len]
|
| 36 |
-
|
| 37 |
-
# Apply attention mask
|
| 38 |
-
attention_weights = attention_weights * attention_mask.float()
|
| 39 |
-
attention_weights = attention_weights / (attention_weights.sum(dim=-1, keepdim=True) + 1e-8)
|
| 40 |
-
|
| 41 |
-
# Weighted sum of LSTM outputs
|
| 42 |
-
attended_output = torch.sum(lstm_out * attention_weights.unsqueeze(-1), dim=1)
|
| 43 |
-
logits = self.fc(attended_output)
|
| 44 |
-
|
| 45 |
-
return logits, attention_weights, outputs.attentions
|
| 46 |
else:
|
| 47 |
-
final_hidden = lstm_out[:, -1, :] # last token output
|
| 48 |
-
logits = self.fc(final_hidden)
|
| 49 |
return logits
|
|
|
|
| 6 |
class DeBERTaLSTMClassifier(nn.Module):
|
| 7 |
def __init__(self, hidden_dim=128, num_labels=2):
|
| 8 |
super().__init__()
|
|
|
|
| 9 |
self.deberta = AutoModel.from_pretrained("microsoft/deberta-base")
|
| 10 |
+
|
| 11 |
+
# Đóng băng DeBERTa
|
| 12 |
for param in self.deberta.parameters():
|
| 13 |
+
param.requires_grad = False
|
| 14 |
+
|
| 15 |
self.lstm = nn.LSTM(
|
| 16 |
input_size=self.deberta.config.hidden_size,
|
| 17 |
hidden_size=hidden_dim,
|
| 18 |
batch_first=True,
|
| 19 |
bidirectional=True
|
| 20 |
)
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Lớp Attention: chuyển đổi hidden state thành điểm số quan trọng (score)
|
| 23 |
self.attention = nn.Linear(hidden_dim * 2, 1)
|
| 24 |
+
|
| 25 |
+
self.fc = nn.Linear(hidden_dim * 2, num_labels)
|
| 26 |
|
| 27 |
def forward(self, input_ids, attention_mask, return_attention=False):
|
| 28 |
+
# 1. DeBERTa
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask, output_attentions=True)
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# 2. LSTM
|
| 33 |
+
lstm_out, _ = self.lstm(outputs.last_hidden_state) # [batch, seq_len, hidden*2]
|
| 34 |
+
|
| 35 |
+
# 3. Tính Attention (Luôn luôn thực hiện)
|
| 36 |
+
# Tính score chưa qua softmax
|
| 37 |
+
attn_scores = self.attention(lstm_out).squeeze(-1) # [batch, seq_len]
|
| 38 |
+
|
| 39 |
+
# Masking chuẩn: Gán giá trị rất nhỏ (-inf) cho các vị trí padding trước khi Softmax
|
| 40 |
+
# Để đảm bảo padding có attention weight = 0 tuyệt đối
|
| 41 |
+
mask = attention_mask.float()
|
| 42 |
+
attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
|
| 43 |
+
|
| 44 |
+
# Softmax để ra weights
|
| 45 |
+
attn_weights = F.softmax(attn_scores, dim=-1) # [batch, seq_len]
|
| 46 |
+
|
| 47 |
+
# Tính Context Vector (Weighted Sum)
|
| 48 |
+
# [batch, seq_len, 1] * [batch, seq_len, hidden*2] -> sum -> [batch, hidden*2]
|
| 49 |
+
context_vector = torch.sum(attn_weights.unsqueeze(-1) * lstm_out, dim=1)
|
| 50 |
+
|
| 51 |
+
# 4. Classification
|
| 52 |
+
logits = self.fc(context_vector)
|
| 53 |
+
|
| 54 |
+
# 5. Return tùy theo yêu cầu
|
| 55 |
if return_attention:
|
| 56 |
+
return logits, attn_weights, outputs.attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
else:
|
|
|
|
|
|
|
| 58 |
return logits
|