Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,7 +23,7 @@ from llm_client import LLMClient
|
|
| 23 |
|
| 24 |
# --------- Config ----------
|
| 25 |
REPO_ID = "dungeon29/deberta-lstm-detect-phishing" # HF repo that holds the checkpoint
|
| 26 |
-
|
| 27 |
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 28 |
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 29 |
|
|
@@ -31,26 +31,73 @@ LABELS = ["benign", "phishing"] # adjust to your classes
|
|
| 31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Initialize model
|
| 36 |
-
model = DeBERTaLSTMClassifier()
|
| 37 |
-
model.to(device)
|
| 38 |
|
| 39 |
# Load state dict
|
| 40 |
try:
|
| 41 |
-
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILE_NAME)
|
| 42 |
-
|
| 43 |
-
state_dict = load_file(model_path)
|
| 44 |
-
|
| 45 |
model.load_state_dict(state_dict, strict=False)
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
except Exception as e:
|
| 50 |
print(f"❌ Error when loading weights: {e}")
|
| 51 |
raise e
|
| 52 |
|
| 53 |
-
model.eval()
|
| 54 |
|
| 55 |
# --------- Initialize RAG & LLM ----------
|
| 56 |
print("Initializing RAG Engine (LangChain)...")
|
|
|
|
| 23 |
|
| 24 |
# --------- Config ----------
|
| 25 |
REPO_ID = "dungeon29/deberta-lstm-detect-phishing" # HF repo that holds the checkpoint
|
| 26 |
+
CKPT_NAME = "model.safetensors" # the .safetensors file name
|
| 27 |
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 28 |
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 29 |
|
|
|
|
| 31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 33 |
|
| 34 |
+
# Check if checkpoint exists locally, otherwise download from HF
|
| 35 |
+
if os.path.exists(CKPT_NAME):
|
| 36 |
+
print(f"📂 Found local checkpoint: {CKPT_NAME}")
|
| 37 |
+
ckpt_path = CKPT_NAME
|
| 38 |
+
else:
|
| 39 |
+
print(f"⬇️ Downloading checkpoint {CKPT_NAME} from HF Hub...")
|
| 40 |
+
try:
|
| 41 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"⚠️ Could not download from HF: {e}")
|
| 44 |
+
# Fallback to pytorch_model.bin if the new name fails
|
| 45 |
+
print("🔄 Trying fallback to pytorch_model.bin...")
|
| 46 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="pytorch_model.bin")
|
| 47 |
+
|
| 48 |
+
# Load weights based on file extension
|
| 49 |
+
if ckpt_path.endswith(".safetensors"):
|
| 50 |
+
print("📦 Loading weights from safetensors...")
|
| 51 |
+
state_dict = load_file(ckpt_path, device=device)
|
| 52 |
+
|
| 53 |
+
# Try to load config.json for model_args
|
| 54 |
+
try:
|
| 55 |
+
if os.path.exists("config.json"):
|
| 56 |
+
config_path = "config.json"
|
| 57 |
+
else:
|
| 58 |
+
config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json")
|
| 59 |
+
|
| 60 |
+
with open(config_path, "r") as f:
|
| 61 |
+
config = json.load(f)
|
| 62 |
+
# Extract model_args from config if they exist, otherwise use defaults
|
| 63 |
+
# Assuming config might have custom keys or we just use defaults
|
| 64 |
+
model_args = config.get("model_args", {})
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"⚠️ Could not load config.json: {e}. Using default model args.")
|
| 67 |
+
model_args = {}
|
| 68 |
+
|
| 69 |
+
else:
|
| 70 |
+
# Legacy loading for .bin/.pt
|
| 71 |
+
print("📦 Loading weights from torch checkpoint...")
|
| 72 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 73 |
+
if isinstance(checkpoint, dict) and "model_state_dict" in checkpoint:
|
| 74 |
+
state_dict = checkpoint["model_state_dict"]
|
| 75 |
+
model_args = checkpoint.get("model_args", {})
|
| 76 |
+
elif isinstance(checkpoint, dict):
|
| 77 |
+
state_dict = checkpoint
|
| 78 |
+
model_args = checkpoint.get("model_args", {})
|
| 79 |
+
else:
|
| 80 |
+
state_dict = checkpoint
|
| 81 |
+
model_args = {}
|
| 82 |
|
| 83 |
# Initialize model
|
| 84 |
+
model = DeBERTaLSTMClassifier(**model_args)
|
|
|
|
| 85 |
|
| 86 |
# Load state dict
|
| 87 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
model.load_state_dict(state_dict, strict=False)
|
| 89 |
|
| 90 |
+
# Check attention layer
|
| 91 |
+
if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
|
| 92 |
+
print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
|
| 93 |
+
else:
|
| 94 |
+
print("✅ Load weights successfully!")
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
print(f"❌ Error when loading weights: {e}")
|
| 98 |
raise e
|
| 99 |
|
| 100 |
+
model.to(device).eval()
|
| 101 |
|
| 102 |
# --------- Initialize RAG & LLM ----------
|
| 103 |
print("Initializing RAG Engine (LangChain)...")
|