dungeon29 commited on
Commit
d1819c6
·
verified ·
1 Parent(s): 293fa7f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -17
app.py CHANGED
@@ -9,6 +9,9 @@ from urllib.parse import urlparse
9
  import time
10
  import os
11
 
 
 
 
12
  # --- import your architecture ---
13
  # Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
14
  # and update the import path accordingly.
@@ -20,36 +23,71 @@ from llm_client import LLMClient
20
 
21
  # --------- Config ----------
22
  REPO_ID = "dungeon29/deberta-lstm-detect-phishing" # HF repo that holds the checkpoint
23
- CKPT_NAME = "pytorch_model.bin" # the .pt file name
24
  MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
25
  LABELS = ["benign", "phishing"] # adjust to your classes
26
 
27
- # If your checkpoint contains hyperparams, you can fetch them like:
28
- # checkpoint.get("config") or checkpoint.get("model_args")
29
- # and pass into DeBERTaLSTMClassifier(**model_args)
30
-
31
  # --------- Load model/tokenizer once (global) ----------
32
  device = "cuda" if torch.cuda.is_available() else "cpu"
33
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
34
 
35
- ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
36
- checkpoint = torch.load(ckpt_path, map_location=device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- # If you saved hyperparams in the checkpoint, use them:
39
- model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
40
  model = DeBERTaLSTMClassifier(**model_args)
41
 
42
- # Load weights
43
  try:
44
- state_dict = torch.load(ckpt_path, map_location=device)
45
-
46
- # Xử lý nếu file lưu dạng checkpoint đầy đủ (có key "model_state_dict")
47
- if "model_state_dict" in state_dict:
48
- state_dict = state_dict["model_state_dict"]
49
-
50
  model.load_state_dict(state_dict, strict=False)
51
 
52
- # Kiểm tra layer attention
53
  if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
54
  print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
55
  else:
 
9
  import time
10
  import os
11
 
12
+ from safetensors.torch import load_file
13
+ import json
14
+
15
  # --- import your architecture ---
16
  # Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
17
  # and update the import path accordingly.
 
23
 
24
  # --------- Config ----------
25
  REPO_ID = "dungeon29/deberta-lstm-detect-phishing" # HF repo that holds the checkpoint
26
+ CKPT_NAME = "model.safetensors" # the .safetensors file name
27
  MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
28
  LABELS = ["benign", "phishing"] # adjust to your classes
29
 
 
 
 
 
30
  # --------- Load model/tokenizer once (global) ----------
31
  device = "cuda" if torch.cuda.is_available() else "cpu"
32
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
33
 
34
+ # Check if checkpoint exists locally, otherwise download from HF
35
+ if os.path.exists(CKPT_NAME):
36
+ print(f"📂 Found local checkpoint: {CKPT_NAME}")
37
+ ckpt_path = CKPT_NAME
38
+ else:
39
+ print(f"⬇️ Downloading checkpoint {CKPT_NAME} from HF Hub...")
40
+ try:
41
+ ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
42
+ except Exception as e:
43
+ print(f"⚠️ Could not download from HF: {e}")
44
+ # Fallback to pytorch_model.bin if the new name fails
45
+ print("🔄 Trying fallback to pytorch_model.bin...")
46
+ ckpt_path = hf_hub_download(repo_id=REPO_ID, filename="pytorch_model.bin")
47
+
48
+ # Load weights based on file extension
49
+ if ckpt_path.endswith(".safetensors"):
50
+ print("📦 Loading weights from safetensors...")
51
+ state_dict = load_file(ckpt_path, device=device)
52
+
53
+ # Try to load config.json for model_args
54
+ try:
55
+ if os.path.exists("config.json"):
56
+ config_path = "config.json"
57
+ else:
58
+ config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json")
59
+
60
+ with open(config_path, "r") as f:
61
+ config = json.load(f)
62
+ # Extract model_args from config if they exist, otherwise use defaults
63
+ # Assuming config might have custom keys or we just use defaults
64
+ model_args = config.get("model_args", {})
65
+ except Exception as e:
66
+ print(f"⚠️ Could not load config.json: {e}. Using default model args.")
67
+ model_args = {}
68
+
69
+ else:
70
+ # Legacy loading for .bin/.pt
71
+ print("📦 Loading weights from torch checkpoint...")
72
+ checkpoint = torch.load(ckpt_path, map_location=device)
73
+ if isinstance(checkpoint, dict) and "model_state_dict" in checkpoint:
74
+ state_dict = checkpoint["model_state_dict"]
75
+ model_args = checkpoint.get("model_args", {})
76
+ elif isinstance(checkpoint, dict):
77
+ state_dict = checkpoint
78
+ model_args = checkpoint.get("model_args", {})
79
+ else:
80
+ state_dict = checkpoint
81
+ model_args = {}
82
 
83
+ # Initialize model
 
84
  model = DeBERTaLSTMClassifier(**model_args)
85
 
86
+ # Load state dict
87
  try:
 
 
 
 
 
 
88
  model.load_state_dict(state_dict, strict=False)
89
 
90
+ # Check attention layer
91
  if hasattr(model, 'attention') and 'attention.weight' not in state_dict:
92
  print("⚠️ Loaded model without attention layer, using newly initialized attention weights")
93
  else: