Spaces:
Paused
Paused
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import requests
|
| 7 |
+
import re
|
| 8 |
+
from urllib.parse import urlparse
|
| 9 |
+
from bs4 import BeautifulSoup
|
| 10 |
+
import time
|
| 11 |
+
import joblib
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# --- import your architecture ---
|
| 16 |
+
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
|
| 17 |
+
# and update the import path accordingly.
|
| 18 |
+
from model import DeBERTaLSTMClassifier # <-- your class
|
| 19 |
+
|
| 20 |
+
# --------- Config ----------
|
| 21 |
+
REPO_ID = "dungeon29/DetectPhishing" # HF repo that holds the checkpoint
|
| 22 |
+
CKPT_NAME = "deberta_lstm_checkpoint.pt" # the .pt file name
|
| 23 |
+
MODEL_NAME = "microsoft/deberta-base" # base tokenizer/backbone
|
| 24 |
+
LABELS = ["benign", "phishing"] # adjust to your classes
|
| 25 |
+
|
| 26 |
+
# If your checkpoint contains hyperparams, you can fetch them like:
|
| 27 |
+
# checkpoint.get("config") or checkpoint.get("model_args")
|
| 28 |
+
# and pass into DeBERTaLSTMClassifier(**model_args)
|
| 29 |
+
|
| 30 |
+
# --------- Load model/tokenizer once (global) ----------
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 33 |
+
|
| 34 |
+
ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
|
| 35 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 36 |
+
|
| 37 |
+
# If you saved hyperparams in the checkpoint, use them:
|
| 38 |
+
model_args = checkpoint.get("model_args", {}) # e.g., {"lstm_hidden":256, "num_labels":2, ...}
|
| 39 |
+
model = DeBERTaLSTMClassifier(**model_args)
|
| 40 |
+
|
| 41 |
+
# Load state dict and handle missing attention layer for older models
|
| 42 |
+
try:
|
| 43 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
| 44 |
+
except RuntimeError as e:
|
| 45 |
+
if "attention" in str(e):
|
| 46 |
+
# Old model without attention layer - initialize attention layer and load partial state
|
| 47 |
+
state_dict = checkpoint["model_state_dict"]
|
| 48 |
+
model_dict = model.state_dict()
|
| 49 |
+
# Filter out attention layer parameters
|
| 50 |
+
filtered_dict = {k: v for k, v in state_dict.items() if "attention" not in k}
|
| 51 |
+
model_dict.update(filtered_dict)
|
| 52 |
+
model.load_state_dict(model_dict)
|
| 53 |
+
print("Loaded model without attention layer, using newly initialized attention weights")
|
| 54 |
+
else:
|
| 55 |
+
raise e
|
| 56 |
+
|
| 57 |
+
model.to(device).eval()
|
| 58 |
+
|
| 59 |
+
# --------- Helper functions ----------
|
| 60 |
+
def is_url(text):
|
| 61 |
+
"""Check if text is a URL"""
|
| 62 |
+
url_pattern = re.compile(
|
| 63 |
+
r'^https?://' # http:// or https://
|
| 64 |
+
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|' # domain...
|
| 65 |
+
r'localhost|' # localhost...
|
| 66 |
+
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip
|
| 67 |
+
r'(?::\d+)?' # optional port
|
| 68 |
+
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
|
| 69 |
+
return url_pattern.match(text) is not None
|
| 70 |
+
|
| 71 |
+
def fetch_html_content(url, timeout=10):
|
| 72 |
+
"""Fetch HTML content from URL"""
|
| 73 |
+
try:
|
| 74 |
+
headers = {
|
| 75 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 76 |
+
}
|
| 77 |
+
response = requests.get(url, headers=headers, timeout=timeout, verify=False)
|
| 78 |
+
response.raise_for_status()
|
| 79 |
+
return response.text, response.status_code
|
| 80 |
+
except requests.exceptions.RequestException as e:
|
| 81 |
+
return None, f"Request error: {str(e)}"
|
| 82 |
+
except Exception as e:
|
| 83 |
+
return None, f"General error: {str(e)}"
|
| 84 |
+
|
| 85 |
+
def predict_single_text(text, text_type="text"):
|
| 86 |
+
"""Predict for a single text input"""
|
| 87 |
+
# Tokenize
|
| 88 |
+
inputs = tokenizer(
|
| 89 |
+
text,
|
| 90 |
+
return_tensors="pt",
|
| 91 |
+
truncation=True,
|
| 92 |
+
padding=True,
|
| 93 |
+
max_length=256
|
| 94 |
+
)
|
| 95 |
+
# DeBERTa typically doesn't use token_type_ids
|
| 96 |
+
inputs.pop("token_type_ids", None)
|
| 97 |
+
# Move to device
|
| 98 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 99 |
+
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
try:
|
| 102 |
+
# Try to get predictions with attention weights
|
| 103 |
+
result = model(**inputs, return_attention=True)
|
| 104 |
+
if isinstance(result, tuple) and len(result) == 3:
|
| 105 |
+
logits, attention_weights, deberta_attentions = result
|
| 106 |
+
has_attention = True
|
| 107 |
+
else:
|
| 108 |
+
logits = result
|
| 109 |
+
has_attention = False
|
| 110 |
+
except TypeError:
|
| 111 |
+
# Fallback for older model without return_attention parameter
|
| 112 |
+
logits = model(**inputs)
|
| 113 |
+
has_attention = False
|
| 114 |
+
|
| 115 |
+
probs = F.softmax(logits, dim=-1).squeeze(0).tolist()
|
| 116 |
+
|
| 117 |
+
# Get tokens for visualization
|
| 118 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze(0).tolist())
|
| 119 |
+
|
| 120 |
+
return probs, tokens, has_attention, attention_weights if has_attention else None
|
| 121 |
+
|
| 122 |
+
def combine_predictions(url_probs, html_probs, url_weight=0.3, html_weight=0.7):
|
| 123 |
+
"""Combine URL and HTML content predictions"""
|
| 124 |
+
combined_probs = [
|
| 125 |
+
url_weight * url_probs[0] + html_weight * html_probs[0], # benign
|
| 126 |
+
url_weight * url_probs[1] + html_weight * html_probs[1] # phishing
|
| 127 |
+
]
|
| 128 |
+
return combined_probs
|
| 129 |
+
|
| 130 |
+
# --------- Inference function ----------
|
| 131 |
+
def predict_fn(text: str):
|
| 132 |
+
if not text or not text.strip():
|
| 133 |
+
return {"error": "Please enter a URL or text."}, ""
|
| 134 |
+
|
| 135 |
+
# Check if input is URL
|
| 136 |
+
if is_url(text.strip()):
|
| 137 |
+
# Process URL
|
| 138 |
+
url = text.strip()
|
| 139 |
+
|
| 140 |
+
# Get prediction for URL itself
|
| 141 |
+
url_probs, url_tokens, url_has_attention, url_attention = predict_single_text(url, "URL")
|
| 142 |
+
|
| 143 |
+
# Try to fetch HTML content
|
| 144 |
+
html_content, status = fetch_html_content(url)
|
| 145 |
+
|
| 146 |
+
if html_content:
|
| 147 |
+
# Get prediction for HTML content
|
| 148 |
+
html_probs, html_tokens, html_has_attention, html_attention = predict_single_text(html_content, "HTML")
|
| 149 |
+
|
| 150 |
+
# Combine predictions
|
| 151 |
+
combined_probs = combine_predictions(url_probs, html_probs)
|
| 152 |
+
|
| 153 |
+
# Use combined probabilities but show analysis for both
|
| 154 |
+
probs = combined_probs
|
| 155 |
+
tokens = url_tokens + ["[SEP]"] + html_tokens[:50] # Limit HTML tokens for display
|
| 156 |
+
has_attention = url_has_attention or html_has_attention
|
| 157 |
+
attention_weights = url_attention if url_has_attention else html_attention
|
| 158 |
+
|
| 159 |
+
analysis_type = "Combined URL + HTML Analysis"
|
| 160 |
+
fetch_status = f"✅ Successfully fetched HTML content (Status: {status})"
|
| 161 |
+
|
| 162 |
+
else:
|
| 163 |
+
# Fallback to URL-only analysis
|
| 164 |
+
probs = url_probs
|
| 165 |
+
tokens = url_tokens
|
| 166 |
+
has_attention = url_has_attention
|
| 167 |
+
attention_weights = url_attention
|
| 168 |
+
|
| 169 |
+
analysis_type = "URL-only Analysis"
|
| 170 |
+
fetch_status = f"⚠️ Could not fetch HTML content: {status}"
|
| 171 |
+
else:
|
| 172 |
+
# Process as regular text
|
| 173 |
+
probs, tokens, has_attention, attention_weights = predict_single_text(text, "text")
|
| 174 |
+
analysis_type = "Text Analysis"
|
| 175 |
+
fetch_status = ""
|
| 176 |
+
|
| 177 |
+
# Get tokens for visualization
|
| 178 |
+
|
| 179 |
+
# Create detailed analysis
|
| 180 |
+
predicted_class = "phishing" if probs[1] > probs[0] else "benign"
|
| 181 |
+
confidence = max(probs)
|
| 182 |
+
|
| 183 |
+
detailed_analysis = f"""
|
| 184 |
+
<div style="font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; background: #1e1e1e; padding: 20px; border-radius: 15px;">
|
| 185 |
+
<div style="background: linear-gradient(135deg, {'#8b0000' if predicted_class == 'phishing' else '#006400'} 0%, {'#dc143c' if predicted_class == 'phishing' else '#228b22'} 100%); padding: 25px; border-radius: 20px; color: white; text-align: center; margin-bottom: 20px; box-shadow: 0 8px 32px rgba(0,0,0,0.5); border: 2px solid {'#ff4444' if predicted_class == 'phishing' else '#44ff44'};">
|
| 186 |
+
<h2 style="margin: 0 0 10px 0; font-size: 28px; color: white;">🔍 {analysis_type}</h2>
|
| 187 |
+
<div style="font-size: 36px; font-weight: bold; margin: 10px 0; color: white;">
|
| 188 |
+
{predicted_class.upper()}
|
| 189 |
+
</div>
|
| 190 |
+
<div style="font-size: 18px; color: #f0f0f0;">
|
| 191 |
+
Confidence: {confidence:.1%}
|
| 192 |
+
</div>
|
| 193 |
+
<div style="margin-top: 15px; font-size: 14px; color: #e0e0e0;">
|
| 194 |
+
{'This appears to be a phishing attempt!' if predicted_class == 'phishing' else '✅ This appears to be legitimate content.'}
|
| 195 |
+
</div>
|
| 196 |
+
</div>
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
if fetch_status:
|
| 200 |
+
detailed_analysis += f"""
|
| 201 |
+
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
|
| 202 |
+
<strong>Fetch Status:</strong> {fetch_status}
|
| 203 |
+
</div>
|
| 204 |
+
"""
|
| 205 |
+
|
| 206 |
+
if has_attention and attention_weights is not None:
|
| 207 |
+
attention_scores = attention_weights.squeeze(0).tolist()
|
| 208 |
+
|
| 209 |
+
token_analysis = []
|
| 210 |
+
for i, (token, score) in enumerate(zip(tokens, attention_scores)):
|
| 211 |
+
# More lenient filtering - include more tokens for text analysis
|
| 212 |
+
if token not in ['[CLS]', '[SEP]', '[PAD]', '<s>', '</s>'] and len(token.strip()) > 0 and score > 0.005:
|
| 213 |
+
clean_token = token.replace('▁', '').replace('Ġ', '').strip() # Handle different tokenizer prefixes
|
| 214 |
+
if clean_token: # Only add if token has content after cleaning
|
| 215 |
+
token_analysis.append({
|
| 216 |
+
'token': clean_token,
|
| 217 |
+
'importance': score,
|
| 218 |
+
'position': i
|
| 219 |
+
})
|
| 220 |
+
|
| 221 |
+
# Sort by importance
|
| 222 |
+
token_analysis.sort(key=lambda x: x['importance'], reverse=True)
|
| 223 |
+
|
| 224 |
+
detailed_analysis += f"""
|
| 225 |
+
## Top important tokens:
|
| 226 |
+
<div style="background: #2d2d2d; padding: 15px; border-radius: 10px; margin: 15px 0; border-left: 4px solid #4caf50; color: #e0e0e0;">
|
| 227 |
+
<strong>Analysis Info:</strong> Found {len(token_analysis)} important tokens out of {len(tokens)} total tokens
|
| 228 |
+
</div>
|
| 229 |
+
<div style="font-family: Arial, sans-serif;">
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
for i, token_info in enumerate(token_analysis[:10]): # Top 10 tokens
|
| 233 |
+
bar_width = int(token_info['importance'] * 100)
|
| 234 |
+
color = "#ff4444" if predicted_class == "phishing" else "#44ff44"
|
| 235 |
+
|
| 236 |
+
detailed_analysis += f"""
|
| 237 |
+
<div style="margin: 8px 0; display: flex; align-items: center; background: #2d2d2d; padding: 8px; border-radius: 8px; border-left: 4px solid {color};">
|
| 238 |
+
<div style="width: 30px; text-align: right; margin-right: 10px; font-weight: bold; color: #ffffff;">
|
| 239 |
+
{i+1}.
|
| 240 |
+
</div>
|
| 241 |
+
<div style="width: 120px; margin-right: 10px; font-weight: bold; color: #e0e0e0; text-align: right;">
|
| 242 |
+
{token_info['token']}
|
| 243 |
+
</div>
|
| 244 |
+
<div style="width: 300px; background-color: #404040; border-radius: 10px; overflow: hidden; margin-right: 10px; border: 1px solid #555;">
|
| 245 |
+
<div style="width: {bar_width}%; background-color: {color}; height: 20px; border-radius: 10px; transition: width 0.3s ease;"></div>
|
| 246 |
+
</div>
|
| 247 |
+
<div style="color: #cccccc; font-size: 12px; font-weight: bold;">
|
| 248 |
+
{token_info['importance']:.1%}
|
| 249 |
+
</div>
|
| 250 |
+
</div>
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
+
detailed_analysis += "</div>\n"
|
| 254 |
+
|
| 255 |
+
detailed_analysis += f"""
|
| 256 |
+
## Detailed analysis:
|
| 257 |
+
<div style="font-family: Arial, sans-serif; background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
|
| 258 |
+
<h3 style="margin: 0 0 15px 0; color: white;">Statistical Overview</h3>
|
| 259 |
+
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
|
| 260 |
+
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
|
| 261 |
+
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
|
| 262 |
+
<div style="font-size: 14px; color: #e0e0e0;">Total tokens</div>
|
| 263 |
+
</div>
|
| 264 |
+
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; border: 1px solid rgba(255,255,255,0.2);">
|
| 265 |
+
<div style="font-size: 24px; font-weight: bold, color: white;">{len([t for t in token_analysis if t['importance'] > 0.05])}</div>
|
| 266 |
+
<div style="font-size: 14px, color: #e0e0e0;">High impact tokens (>5%)</div>
|
| 267 |
+
</div>
|
| 268 |
+
</div>
|
| 269 |
+
</div>
|
| 270 |
+
<div style="font-family: Arial, sans-serif; margin: 15px 0; background: #2d2d2d; padding: 20px; border-radius: 15px; border: 1px solid #555;">
|
| 271 |
+
<h3 style="color: #ffffff; margin-bottom: 15px;"> Prediction Confidence</h3>
|
| 272 |
+
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
|
| 273 |
+
<span style="font-weight: bold; color: #ff4444;">Phishing</span>
|
| 274 |
+
<span style="font-weight: bold; color: #44ff44;">Benign</span>
|
| 275 |
+
</div>
|
| 276 |
+
<div style="width: 100%; background-color: #404040; border-radius: 25px; overflow: hidden; height: 30px; border: 1px solid #666;">
|
| 277 |
+
<div style="width: {probs[1]*100:.1f}%; background: linear-gradient(90deg, #ff4444 0%, #ff6666 100%); height: 100%; display: flex; align-items: center; justify-content: center; color: white; font-weight: bold; font-size: 14px;">
|
| 278 |
+
{probs[1]:.1%}
|
| 279 |
+
</div>
|
| 280 |
+
</div>
|
| 281 |
+
<div style="margin-top: 10px; text-align: center; color: #cccccc; font-size: 14px;">
|
| 282 |
+
Benign: {probs[0]:.1%}
|
| 283 |
+
</div>
|
| 284 |
+
</div>
|
| 285 |
+
"""
|
| 286 |
+
else:
|
| 287 |
+
# Fallback analysis without attention weights
|
| 288 |
+
detailed_analysis += f"""
|
| 289 |
+
<div style="background: linear-gradient(135deg, #1a237e 0%, #3949ab 100%); padding: 20px; border-radius: 15px; color: white; margin: 15px 0; border: 2px solid #3f51b5;">
|
| 290 |
+
<h3 style="margin: 0 0 15px 0; color: white;">Basic Analysis</h3>
|
| 291 |
+
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px;">
|
| 292 |
+
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
|
| 293 |
+
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[1]:.1%}</div>
|
| 294 |
+
<div style="font-size: 14px; color: #e0e0e0;">Phishing</div>
|
| 295 |
+
</div>
|
| 296 |
+
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
|
| 297 |
+
<div style="font-size: 24px; font-weight: bold; color: white;">{probs[0]:.1%}</div>
|
| 298 |
+
<div style="font-size: 14px; color: #e0e0e0;">Benign</div>
|
| 299 |
+
</div>
|
| 300 |
+
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px; text-align: center; border: 1px solid rgba(255,255,255,0.2);">
|
| 301 |
+
<div style="font-size: 24px; font-weight: bold; color: white;">{len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])}</div>
|
| 302 |
+
<div style="font-size: 14px; color: #e0e0e0;">Tokens</div>
|
| 303 |
+
</div>
|
| 304 |
+
</div>
|
| 305 |
+
</div>
|
| 306 |
+
<div style="background: #2d2d2d; padding: 20px; border-radius: 15px; margin: 15px 0; border: 1px solid #555;">
|
| 307 |
+
<h3 style="color: #ffffff; margin: 0 0 15px 0;">🔤 Tokens in text:</h3>
|
| 308 |
+
<div style="display: flex; flex-wrap: wrap; gap: 8px;">""" + ''.join([f'<span style="background: #404040; color: #64b5f6; padding: 4px 8px; border-radius: 15px; font-size: 12px; border: 1px solid #666;">{token.replace("▁", "")}</span>' for token in tokens if token not in ['[CLS]', '[SEP]', '[PAD]']]) + f"""</div>
|
| 309 |
+
<div style="margin-top: 15px; padding: 10px; background: #3d2914; border-radius: 8px; border-left: 4px solid #ff9800;">
|
| 310 |
+
<strong style="color: #ffcc02;">Debug info:</strong> <span style="color: #e0e0e0;">Found {len(tokens)} total tokens, {len([t for t in tokens if t not in ['[CLS]', '[SEP]', '[PAD]']])} content tokens</span>
|
| 311 |
+
</div>
|
| 312 |
+
</div>
|
| 313 |
+
<div style="background: #3d2914; padding: 15px; border-radius: 10px; border-left: 4px solid #ff9800; margin: 15px 0;">
|
| 314 |
+
<p style="margin: 0; color: #ffcc02; font-size: 14px;">
|
| 315 |
+
<strong>Note:</strong> Detailed attention weights analysis is not available for the current model.
|
| 316 |
+
</p>
|
| 317 |
+
</div>
|
| 318 |
+
"""
|
| 319 |
+
|
| 320 |
+
# Build label->prob mapping for Gradio Label output
|
| 321 |
+
if len(LABELS) == len(probs):
|
| 322 |
+
prediction_result = {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
|
| 323 |
+
else:
|
| 324 |
+
prediction_result = {f"class_{i}": float(p) for i, p in enumerate(probs)}
|
| 325 |
+
|
| 326 |
+
return prediction_result, detailed_analysis
|
| 327 |
+
|
| 328 |
+
# --------- Gradio UI ----------
|
| 329 |
+
deberta_interface = gr.Interface(
|
| 330 |
+
fn=predict_fn,
|
| 331 |
+
inputs=gr.Textbox(label="URL or text", placeholder="Example: http://suspicious-site.example or paste any text"),
|
| 332 |
+
outputs=[
|
| 333 |
+
gr.Label(label="Prediction result"),
|
| 334 |
+
gr.Markdown(label="Detailed token analysis")
|
| 335 |
+
],
|
| 336 |
+
title="Phishing Detector (DeBERTa + LSTM)",
|
| 337 |
+
description="""
|
| 338 |
+
Enter a URL or text for analysis.
|
| 339 |
+
**Features:**
|
| 340 |
+
- **URL Analysis**: For URLs, the system will fetch HTML content and combine both URL and content analysis
|
| 341 |
+
- **Combined Prediction**: Uses weighted combination of URL structure and webpage content analysis
|
| 342 |
+
- **Visual Analysis**: Predict phishing/benign probability with visual charts
|
| 343 |
+
- **Token Importance**: Display the most important tokens in classification
|
| 344 |
+
- **Detailed Insights**: Comprehensive analysis of the impact of each token
|
| 345 |
+
- **Dark Theme**: Beautiful interface with colorful charts optimized for dark themes
|
| 346 |
+
|
| 347 |
+
**How it works for URLs:**
|
| 348 |
+
1. Analyze the URL structure itself
|
| 349 |
+
2. Fetch the webpage HTML content
|
| 350 |
+
3. Analyze the webpage content
|
| 351 |
+
4. Combine both results for final prediction (30% URL + 70% content)
|
| 352 |
+
""",
|
| 353 |
+
examples=[
|
| 354 |
+
["http://rendmoiunserviceeee.com"],
|
| 355 |
+
["https://www.google.com"],
|
| 356 |
+
["Dear customer, your account has been suspended. Click here to verify your identity immediately."],
|
| 357 |
+
["https://mail-secure-login-verify.example/path?token=suspicious"],
|
| 358 |
+
["http://paypaI-security-update.net/login"],
|
| 359 |
+
["Your package has been delivered successfully. Thank you for using our service."],
|
| 360 |
+
["https://github.com/user/repo"]
|
| 361 |
+
],
|
| 362 |
+
theme=gr.themes.Soft(),
|
| 363 |
+
css="""
|
| 364 |
+
.gradio-container {
|
| 365 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 366 |
+
background-color: #1e1e1e !important;
|
| 367 |
+
color: #ffffff !important;
|
| 368 |
+
}
|
| 369 |
+
.dark .gradio-container {
|
| 370 |
+
background-color: #1e1e1e !important;
|
| 371 |
+
}
|
| 372 |
+
/* Dark theme for all components */
|
| 373 |
+
.block {
|
| 374 |
+
background-color: #2d2d2d !important;
|
| 375 |
+
border: 1px solid #444 !important;
|
| 376 |
+
}
|
| 377 |
+
.gradio-textbox {
|
| 378 |
+
background-color: #3d3d3d !important;
|
| 379 |
+
color: #ffffff !important;
|
| 380 |
+
border: 1px solid #666 !important;
|
| 381 |
+
}
|
| 382 |
+
.gradio-button {
|
| 383 |
+
background-color: #4a4a4a !important;
|
| 384 |
+
color: #ffffff !important;
|
| 385 |
+
border: 1px solid #666 !important;
|
| 386 |
+
}
|
| 387 |
+
.gradio-button:hover {
|
| 388 |
+
background-color: #5a5a5a !important;
|
| 389 |
+
}
|
| 390 |
+
"""
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
demo = gr.TabbedInterface(
|
| 394 |
+
[deberta_interface,],
|
| 395 |
+
["DeBERTa + LSTM"]
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
if __name__ == "__main__":
|
| 399 |
+
demo.launch()
|