test_api / api.py
Codelinhtinh
change api
41ed92b
from fastapi import FastAPI, File, UploadFile, HTTPException
from PIL import Image
from io import BytesIO
import cv2
import numpy as np
from main import *
from utils import load_session
from preprocess import resize_and_pad
from fastapi.responses import FileResponse
import tempfile
import json
api = FastAPI()
class CFG:
image_size = IMAGE_SIZE
conf_thres = 0.01
iou_thres = 0.1
cfg = CFG()
session = load_session(PATH_MODEL)
@api.get("/")
def read_root():
return {"message": "Hello ! Welcome to my Demo"}
@api.post("/predict/")
async def predict(file: UploadFile):
# Read and process the uploaded image
contents = await file.read()
image = Image.open(BytesIO(contents))
image = image.copy()
# Convert the PIL Image to a NumPy array
image_cv = np.array(image)
image_cv_2 = image_cv.copy()
image, ratio, (padd_left, padd_top) = resize_and_pad(image_cv, new_shape=cfg.image_size)
img_norm = normalization_input(image)
pred = infer(session, img_norm)
pred = postprocess(pred)[0]
paddings = np.array([padd_left, padd_top, padd_left, padd_top])
pred[:,:4] = (pred[:,:4] - paddings) / ratio
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image_cv)
image_cv_2 =Image.fromarray(image_cv_2)
image = visualize(image_cv_2, pred)
# Save the processed and visualized image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
return FileResponse(temp_file_path, media_type="image/jpeg")
if __name__ == "__main__":
import uvicorn
uvicorn.run(api, host="0.0.0.0", port=7860)