Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from streamlit_extras.add_vertical_space import add_vertical_space | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| import pickle | |
| from langchain import HuggingFaceHub | |
| from langchain.chains.question_answering import load_qa_chain | |
| import os | |
| def main(pdf): | |
| st.header('Chat With PDF') | |
| if pdf is not None: | |
| pdf_reader = PdfReader(pdf) | |
| text = '' | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text=text) | |
| store_name = pdf.name[:-4] | |
| if os.path.exists(f'{store_name}.pkl'): | |
| with open(f'{store_name}.pkl', 'rb') as f: | |
| VectorStore = pickle.load(f) | |
| else: | |
| embeddings = HuggingFaceEmbeddings() | |
| VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
| with open(f'{store_name}.pkl', 'wb') as f: | |
| pickle.dump(VectorStore, f) | |
| ask_query = st.text_input('Ask question about PDF: ') | |
| if ask_query: | |
| docs = VectorStore.similarity_search(query=ask_query, k=3) | |
| llm = HuggingFaceHub(repo_id="Salesforce/xgen-7b-8k-base", model_kwargs={"temperature": 0, "max_length": 64}) | |
| chain = load_qa_chain(llm=llm, chain_type='stuff') | |
| response = chain.run(input_documents=docs, question=ask_query) | |
| st.write(response) | |
| if __name__ == "__main__": | |
| load_dotenv() | |
| st.sidebar.title('LLM PDF Chats') | |
| st.sidebar.markdown(''' | |
| ## About | |
| - This is LLM power chatbot | |
| - By [Prathamesh Shete]('https://www.linkedin.com/in/prathameshshete') | |
| ''') | |
| add_vertical_space(5) | |
| st.sidebar.write('Made By Prathamesh') | |
| pdf = st.file_uploader('Upload Your PDF', type='pdf') | |
| main(pdf) | |