Spaces:
Running
on
Zero
Running
on
Zero
File size: 41,297 Bytes
aaafaf0 25daeff aaafaf0 87c9ae9 25daeff aaafaf0 87c9ae9 4cd7f21 3de1ebe 87c9ae9 aaafaf0 4cd7f21 77afe44 4cd7f21 1835c38 aaafaf0 87c9ae9 aaafaf0 4cd7f21 aaafaf0 e63ae25 aaafaf0 f687863 aaafaf0 f687863 aaafaf0 f687863 aaafaf0 c8737e5 aaafaf0 25daeff aaafaf0 4cd7f21 aaafaf0 4cd7f21 25daeff b4df47c 25daeff b4df47c 25daeff 8a268b5 25daeff 8a268b5 77afe44 8a268b5 77afe44 8a268b5 25daeff 77afe44 25daeff aaafaf0 77afe44 aaafaf0 87c9ae9 aaafaf0 87c9ae9 aaafaf0 87c9ae9 aaafaf0 77afe44 aaafaf0 87c9ae9 aaafaf0 77afe44 3de1ebe 77afe44 87c9ae9 b4df47c 87c9ae9 77afe44 87c9ae9 b4df47c 87c9ae9 77afe44 cb0b907 ff10532 cb0b907 77afe44 3de1ebe b4df47c 77afe44 b4df47c 77afe44 b4df47c 77afe44 b4df47c 77afe44 b4df47c 8a268b5 4cd7f21 8a268b5 4cd7f21 8a268b5 4cd7f21 77afe44 4cd7f21 1835c38 77afe44 1835c38 52b011d e63ae25 77afe44 e63ae25 52b011d 77afe44 e63ae25 52b011d 77afe44 52b011d 1835c38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 |
import itertools
import json
import math
import os
from pathlib import Path
import random
import statistics
import os
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
import torch
from PIL import Image
import pandas as pd
from spaces.zero.torch.aoti import ZeroGPUCompiledModel, ZeroGPUWeights
from torchao import autoquant
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig, Int4WeightOnlyConfig, Int8DynamicActivationInt4WeightConfig, Int8DynamicActivationInt8WeightConfig, PerRow, quantize_
from torchao.quantization import Int8WeightOnlyConfig
import spaces
import torch
from torch.utils._pytree import tree_map
from torchao.utils import get_model_size_in_bytes
from qwenimage.debug import ctimed, ftimed, print_first_param
from qwenimage.models.attention_processors import QwenDoubleStreamAttnProcessorFA3, QwenDoubleStreamAttnProcessorSageAttn2, sageattn_qk_int8_pv_fp16_cuda_wrapper, sageattn_qk_int8_pv_fp16_triton_wrapper, sageattn_qk_int8_pv_fp8_cuda_sm90_wrapper, sageattn_qk_int8_pv_fp8_cuda_wrapper, sageattn_wrapper
from qwenimage.models.first_block_cache import apply_cache_on_pipe
from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline, calculate_dimensions
from qwenimage.models.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.experiment import AbstractExperiment, ExperimentConfig
from qwenimage.debug import ProfileSession, ftimed
from qwenimage.optimization import INDUCTOR_CONFIGS, TRANSFORMER_DYNAMIC_SHAPES, aoti_apply, drain_module_parameters, optimize_pipeline_
from qwenimage.prompt import build_camera_prompt
class ExperimentRegistry:
registry = {}
@classmethod
def register(cls, name: str):
def decorator(experiment_class):
if name in cls.registry:
raise ValueError(f"Experiment '{name}' is already registered")
cls.registry[name] = experiment_class
experiment_class.registry_name = name
return experiment_class
return decorator
@classmethod
def get(cls, name: str):
if name not in cls.registry:
raise KeyError(f"{name} not in {list(cls.registry.keys())}")
return cls.registry[name]
@classmethod
def filter(cls, startswith=None, endswith=None, contains=None, not_contain=None):
keys = list(cls.registry.keys())
if startswith is not None:
keys = [k for k in keys if k.startswith(startswith)]
if endswith is not None:
keys = [k for k in keys if k.endswith(endswith)]
if contains is not None:
keys = [k for k in keys if contains in k]
if not_contain is not None:
keys = [k for k in keys if not_contain not in k]
return keys
@classmethod
def keys(cls):
return list(cls.registry.keys())
@classmethod
def dict(cls):
return dict(cls.registry)
class PipeInputs:
images = list(Path("scripts/assets/test_images_v1/").glob("*.jpg"))
camera_params = {
"rotate_deg": [-90,-45,0,45,90],
"move_forward": [0,5,10],
"vertical_tilt": [-1,0,1],
"wideangle": [True, False]
}
def __init__(self, seed=42):
self.seed=seed
param_keys = list(self.camera_params.keys())
param_values = list(self.camera_params.values())
param_keys.append("image")
param_values.append(self.images)
self.total_inputs = []
for comb in itertools.product(*param_values):
inp = {key:val for key,val in zip(param_keys, comb)}
self.total_inputs.append(inp)
print(f"{len(self.total_inputs)} input combinations")
random.seed(seed)
random.shuffle(self.total_inputs)
self.generator = None
def __len__(self):
return len(self.total_inputs)
def __getitem__(self, ind):
if self.generator is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.generator = torch.Generator(device=device).manual_seed(self.seed)
inputs = self.total_inputs[ind]
cam_prompt_params = {k:v for k,v in inputs.items() if k in self.camera_params}
prompt = build_camera_prompt(**cam_prompt_params)
image = [Image.open(inputs["image"]).convert("RGB")]
return {
"image": image,
"prompt": prompt,
"generator": self.generator,
"num_inference_steps": 4,
"true_cfg_scale": 1.0,
"num_images_per_prompt": 1,
}
@ExperimentRegistry.register(name="qwen_base")
class QwenBaseExperiment(AbstractExperiment):
def __init__(self, config: ExperimentConfig | None = None, pipe_inputs: PipeInputs | None = None):
self.config = config if config is not None else ExperimentConfig()
self.config.report_dir.mkdir(parents=True, exist_ok=True)
self.profile_report = ProfileSession().start()
self.pipe_inputs = pipe_inputs if pipe_inputs is not None else PipeInputs()
@ftimed
def load(self):
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"experiment load cuda: {torch.cuda.is_available()=}")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map=device),
torch_dtype=dtype,
).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors", adapter_name="angles"
)
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
pipe.unload_lora_weights()
self.pipe = pipe
@ftimed
def optimize(self):
pass
def run_once(self, *args, **kwargs):
return self.pipe(*args, **kwargs).images[0]
def run(self):
output_save_dir = self.config.report_dir / f"{self.config.name}_outputs"
output_save_dir.mkdir(parents=True, exist_ok=True)
for i in range(self.config.iterations):
inputs = self.pipe_inputs[i]
with ctimed("run_once"):
output = self.run_once(**inputs)
output.save(output_save_dir / f"{i:03d}.jpg")
def report(self):
print(self.profile_report)
raw_data = dict(self.profile_report.recorded_times)
with open(self.config.report_dir/ f"{self.config.name}_raw.json", "w") as f:
json.dump(raw_data, f, indent=2)
data = []
for name, times in self.profile_report.recorded_times.items():
mean = statistics.mean(times)
std = statistics.stdev(times) if len(times) > 1 else 0
size = len(times)
data.append({
'name': name,
'mean': mean,
'std': std,
'len': size
})
df = pd.DataFrame(data)
df.to_csv(self.config.report_dir/f"{self.config.name}.csv")
return df, raw_data
def cleanup(self):
del self.pipe.transformer
del self.pipe
@ExperimentRegistry.register(name="qwen_50step")
class Qwen_50Step(QwenBaseExperiment):
@ftimed
def load(self):
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"experiment load cuda: {torch.cuda.is_available()=}")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained( # use our own model
"Qwen/Qwen-Image-Edit-2509",
subfolder='transformer',
torch_dtype=dtype,
device_map=device
),
torch_dtype=dtype,
).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors", adapter_name="angles"
)
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
pipe.unload_lora_weights()
self.pipe = pipe
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 50
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_lightning_lora")
class Qwen_Lightning_Lora(QwenBaseExperiment):
@ftimed
def load(self):
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3), # We use shift=3 in distillation
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3), # We use shift=3 in distillation
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None, # set shift_terminal to None
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) # TODO: check scheduler sync issue mentioned by https://pytorch.org/blog/presenting-flux-fast-making-flux-go-brrr-on-h100s/
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained( # use our own model
"Qwen/Qwen-Image-Edit-2509",
subfolder='transformer',
torch_dtype=dtype,
device_map=device
),
scheduler=scheduler,
torch_dtype=dtype,
).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors",
adapter_name="angles"
)
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Edit-2509/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16.safetensors",
adapter_name="lightning",
)
pipe.set_adapters(["angles", "lightning"], adapter_weights=[1.25, 1.])
pipe.fuse_lora(adapter_names=["angles", "lightning"], lora_scale=1.0)
pipe.unload_lora_weights()
self.pipe = pipe
@ExperimentRegistry.register(name="qwen_lightning_lora_3step")
class Qwen_Lightning_Lora_3step(Qwen_Lightning_Lora):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 3
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_base_3step")
class Qwen_Base_3step(QwenBaseExperiment):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 3
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_lightning_lora_2step")
class Qwen_Lightning_Lora_2step(Qwen_Lightning_Lora):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 2
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_base_2step")
class Qwen_Base_2step(QwenBaseExperiment):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 2
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_fuse")
class Qwen_Fuse(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
@ExperimentRegistry.register(name="qwen_fuse_aot")
class Qwen_Fuse_AoT(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=False,
suffix="_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_fa3_fuse")
class Qwen_FA3_Fuse(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
@ExperimentRegistry.register(name="qwen_fa3")
class Qwen_FA3(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
@ExperimentRegistry.register(name="qwen_sageattn")
class Qwen_Sageattn(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_wrapper))
@ExperimentRegistry.register(name="qwen_sageattn_qk_int8_pv_fp16_cuda")
class Qwen_Sageattn_qk_int8_pv_fp16_cuda(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp16_cuda_wrapper))
@ExperimentRegistry.register(name="qwen_sageattn_qk_int8_pv_fp16_triton")
class Qwen_Sageattn_qk_int8_pv_fp16_triton(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp16_triton_wrapper))
@ExperimentRegistry.register(name="qwen_sageattn_qk_int8_pv_fp8_cuda")
class Qwen_Sageattn_qk_int8_pv_fp8_cuda(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp8_cuda_wrapper))
@ExperimentRegistry.register(name="qwen_sageattn_qk_int8_pv_fp8_cuda_sm90")
class Qwen_Sageattn_qk_int8_pv_fp8_cuda_sm90(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp8_cuda_sm90_wrapper))
@ExperimentRegistry.register(name="qwen_aot")
class Qwen_AoT(QwenBaseExperiment):
@ftimed
def optimize(self):
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=False,
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_fa3_aot")
class Qwen_FA3_AoT(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=False,
suffix="_fa3",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_sage_aot")
class Qwen_Sage_AoT(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2())
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=False,
suffix="_sage",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_fa3_aot_int8")
class Qwen_FA3_AoT_int8(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_sage_aot_int8")
class Qwen_Sage_AoT_int8(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2())
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_sage",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_sage_aot_int8da")
class Qwen_Sage_AoT_int8da(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp8_cuda_sm90_wrapper))
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
quantize_config=Int8DynamicActivationInt8WeightConfig(),
suffix="_int8da_sage",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_sagefp8cuda_aot_int8da")
class Qwen_Sagefp8cuda_AoT_int8da(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp8_cuda_wrapper))
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
quantize_config=Int8DynamicActivationInt8WeightConfig(),
suffix="_int8da_sage",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_sagefp8cuda_aot_int8wo")
class Qwen_Sagefp8cuda_AoT_int8wo(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2(sageattn_qk_int8_pv_fp8_cuda_wrapper))
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
quantize_config=Int8WeightOnlyConfig(),
suffix="_int8wo_sage",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_fp8_weightonly")
class Qwen_fp8_Weightonly(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
quantize_(self.pipe.transformer, Float8WeightOnlyConfig())
@ExperimentRegistry.register(name="qwen_int8_weightonly")
class Qwen_int8_Weightonly(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
quantize_(self.pipe.transformer, Int8WeightOnlyConfig())
@ExperimentRegistry.register(name="qwen_fp8")
class Qwen_fp8(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
quantize_(self.pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
@ExperimentRegistry.register(name="qwen_int8")
class Qwen_int8(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
quantize_(self.pipe.transformer, Int8DynamicActivationInt8WeightConfig())
@ExperimentRegistry.register(name="qwen_fa3_aot_fp8")
class Qwen_FA3_AoT_fp8(QwenBaseExperiment):
@ftimed
# @spaces.GPU()
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
suffix="_fa3"
cache_compiled=self.config.cache_compiled
transformer_pt2_cache_path = f"checkpoints/transformer_fp8{suffix}_archive.pt2"
transformer_weights_cache_path = f"checkpoints/transformer_fp8{suffix}_weights.pt"
print(f"original model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
quantize_(self.pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
print_first_param(self.pipe.transformer)
print(f"quantized model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
inductor_config = INDUCTOR_CONFIGS
if os.path.isfile(transformer_pt2_cache_path) and cache_compiled:
drain_module_parameters(self.pipe.transformer)
zerogpu_weights = torch.load(transformer_weights_cache_path, weights_only=False)
compiled_transformer = ZeroGPUCompiledModel(transformer_pt2_cache_path, zerogpu_weights)
else:
with spaces.aoti_capture(self.pipe.transformer) as call:
self.pipe(**pipe_kwargs)
dynamic_shapes = tree_map(lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=self.pipe.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
compiled_transformer = spaces.aoti_compile(exported, inductor_config)
with open(transformer_pt2_cache_path, "wb") as f:
f.write(compiled_transformer.archive_file.getvalue())
torch.save(compiled_transformer.weights, transformer_weights_cache_path)
aoti_apply(compiled_transformer, self.pipe.transformer)
@ExperimentRegistry.register(name="qwen_sage_aot_fp8")
class Qwen_Sage_AoT_fp8(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorSageAttn2())
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
quantize_config=Float8DynamicActivationFloat8WeightConfig(),
suffix="_fp8_sage",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
# FA3_AoT_fp8_fuse
@ExperimentRegistry.register(name="qwen_fa3_aot_fp8_fuse")
class Qwen_FA3_AoT_fp8_fuse(QwenBaseExperiment):
@ftimed
# @spaces.GPU()
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
suffix="_fa3_fuse"
cache_compiled=self.config.cache_compiled
transformer_pt2_cache_path = f"checkpoints/transformer_fp8{suffix}_archive.pt2"
transformer_weights_cache_path = f"checkpoints/transformer_fp8{suffix}_weights.pt"
print(f"original model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
quantize_(self.pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
print_first_param(self.pipe.transformer)
print(f"quantized model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
inductor_config = INDUCTOR_CONFIGS
if os.path.isfile(transformer_pt2_cache_path) and cache_compiled:
drain_module_parameters(self.pipe.transformer)
zerogpu_weights = torch.load(transformer_weights_cache_path, weights_only=False)
compiled_transformer = ZeroGPUCompiledModel(transformer_pt2_cache_path, zerogpu_weights)
else:
with spaces.aoti_capture(self.pipe.transformer) as call:
self.pipe(**pipe_kwargs)
dynamic_shapes = tree_map(lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=self.pipe.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
compiled_transformer = spaces.aoti_compile(exported, inductor_config)
with open(transformer_pt2_cache_path, "wb") as f:
f.write(compiled_transformer.archive_file.getvalue())
torch.save(compiled_transformer.weights, transformer_weights_cache_path)
aoti_apply(compiled_transformer, self.pipe.transformer)
# FA3_AoT_int8_fuse
@ExperimentRegistry.register(name="qwen_fa3_aot_int8_fuse")
class Qwen_FA3_AoT_int8_fuse(QwenBaseExperiment):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
# lightning_FA3_AoT_fp8_fuse
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_fp8_fuse")
class Qwen_lightning_FA3_AoT_fp8_fuse(Qwen_Lightning_Lora):
@ftimed
# @spaces.GPU()
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
suffix="_fa3_fuse"
cache_compiled=self.config.cache_compiled
transformer_pt2_cache_path = f"checkpoints/transformer_fp8{suffix}_archive.pt2"
transformer_weights_cache_path = f"checkpoints/transformer_fp8{suffix}_weights.pt"
print(f"original model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
quantize_(self.pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
print_first_param(self.pipe.transformer)
print(f"quantized model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
inductor_config = INDUCTOR_CONFIGS
if os.path.isfile(transformer_pt2_cache_path) and cache_compiled:
drain_module_parameters(self.pipe.transformer)
zerogpu_weights = torch.load(transformer_weights_cache_path, weights_only=False)
compiled_transformer = ZeroGPUCompiledModel(transformer_pt2_cache_path, zerogpu_weights)
else:
with spaces.aoti_capture(self.pipe.transformer) as call:
self.pipe(**pipe_kwargs)
dynamic_shapes = tree_map(lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=self.pipe.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
compiled_transformer = spaces.aoti_compile(exported, inductor_config)
with open(transformer_pt2_cache_path, "wb") as f:
f.write(compiled_transformer.archive_file.getvalue())
torch.save(compiled_transformer.weights, transformer_weights_cache_path)
aoti_apply(compiled_transformer, self.pipe.transformer)
# lightning_FA3_AoT_int8_fuse
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse")
class Qwen_Lightning_FA3_AoT_int8_fuse(Qwen_Lightning_Lora):
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse_2step")
class Qwen_Lightning_FA3_AoT_int8_fuse_2step(Qwen_Lightning_FA3_AoT_int8_fuse):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 2
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse_3step")
class Qwen_Lightning_FA3_AoT_int8_fuse_3step(Qwen_Lightning_FA3_AoT_int8_fuse):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 3
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_fa3_aot_int8_fuse_2step")
class Qwen_FA3_AoT_int8_fuse_2step(Qwen_FA3_AoT_int8_fuse):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 2
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_fa3_aot_int8_fuse_3step")
class Qwen_FA3_AoT_int8_fuse_3step(Qwen_FA3_AoT_int8_fuse):
def run_once(self, *args, **kwargs):
kwargs["num_inference_steps"] = 3
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_channels_last")
class Qwen_Channels_Last(QwenBaseExperiment):
"""
This experiment may be useless: channels last format only works with NCHW tensors,
i.e. 2D CNNs, transformer is 1D and vae is 3D, plus, for it to work the inputs need to
be converted in-pipe as well. left for reference.
"""
@ftimed
def optimize(self):
# self.pipe.vae = self.pipe.vae.to(memory_format=torch.channels_last_3d)
self.pipe.transformer = self.pipe.transformer.to(memory_format=torch.channels_last)
@ExperimentRegistry.register(name="qwen_fbcache_05")
class Qwen_FBCache_05(QwenBaseExperiment):
@ftimed
def optimize(self):
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.5,)
@ExperimentRegistry.register(name="qwen_fbcache_055")
class Qwen_FBCache_055(QwenBaseExperiment):
@ftimed
def optimize(self):
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.55,)
@ExperimentRegistry.register(name="qwen_fbcache_054")
class Qwen_FBCache_054(QwenBaseExperiment):
@ftimed
def optimize(self):
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.54,)
@ExperimentRegistry.register(name="qwen_fbcache_053")
class Qwen_FBCache_053(QwenBaseExperiment):
@ftimed
def optimize(self):
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.53,)
@ExperimentRegistry.register(name="qwen_fbcache_052")
class Qwen_FBCache_052(QwenBaseExperiment):
@ftimed
def optimize(self):
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.52,)
@ExperimentRegistry.register(name="qwen_fbcache_051")
class Qwen_FBCache_051(QwenBaseExperiment):
@ftimed
def optimize(self):
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.51,)
# @ExperimentRegistry.register(name="qwen_lightning_fa3_aot_autoquant_fuse")
class Qwen_lightning_FA3_AoT_autoquant_fuse(Qwen_Lightning_Lora):
"""
Seemingly not working with AoT export
"""
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
suffix="_autoquant_fa3_fuse"
cache_compiled=self.config.cache_compiled
transformer_pt2_cache_path = f"checkpoints/transformer_{suffix}_archive.pt2"
transformer_weights_cache_path = f"checkpoints/transformer_{suffix}_weights.pt"
print(f"original model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
autoquant(self.pipe.transformer, error_on_unseen=False)
print_first_param(self.pipe.transformer)
print(f"quantized model size: {get_model_size_in_bytes(self.pipe.transformer) / 1024 / 1024} MB")
inductor_config = INDUCTOR_CONFIGS
if os.path.isfile(transformer_pt2_cache_path) and cache_compiled:
drain_module_parameters(self.pipe.transformer)
zerogpu_weights = torch.load(transformer_weights_cache_path, weights_only=False)
compiled_transformer = ZeroGPUCompiledModel(transformer_pt2_cache_path, zerogpu_weights)
else:
with spaces.aoti_capture(self.pipe.transformer) as call:
self.pipe(**pipe_kwargs)
dynamic_shapes = tree_map(lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=self.pipe.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
compiled_transformer = spaces.aoti_compile(exported, inductor_config)
with open(transformer_pt2_cache_path, "wb") as f:
f.write(compiled_transformer.archive_file.getvalue())
torch.save(compiled_transformer.weights, transformer_weights_cache_path)
aoti_apply(compiled_transformer, self.pipe.transformer)
class Qwen_Downsize_Mixin:
def run_once(self, *args, **kwargs):
image = kwargs["image"][0]
w,h = image.size
real_w, real_h = calculate_dimensions(1024 * 1024, w / h)
down_w, down_h = calculate_dimensions(self.size * self.size, w / h)
image = image.resize((down_w, down_h))
kwargs["image"] = [image]
kwargs["vae_image_override"] = self.size * self.size
kwargs["width"] = real_w
kwargs["height"] = real_h
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_downsize768")
class Qwen_Downsize768(Qwen_Downsize_Mixin, QwenBaseExperiment):
size = 768
@ExperimentRegistry.register(name="qwen_downsize512")
class Qwen_Downsize512(Qwen_Downsize_Mixin, QwenBaseExperiment):
size = 512
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse_2step_fbcache_055_downsize512")
class Qwen_Lightning_FA3_AoT_int8_fuse_2step_FBCache055_Downsize512(Qwen_Lightning_Lora):
size = 512
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.55,)
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
def run_once(self, *args, **kwargs):
image = kwargs["image"][0]
w,h = image.size
real_w, real_h = calculate_dimensions(1024 * 1024, w / h)
down_w, down_h = calculate_dimensions(self.size * self.size, w / h)
image = image.resize((down_w, down_h))
kwargs["image"] = [image]
kwargs["vae_image_override"] = self.size * self.size
kwargs["width"] = real_w
kwargs["height"] = real_h
kwargs["num_inference_steps"] = 2
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse_downsize512")
class Qwen_Lightning_FA3_AoT_int8_fuse_Downsize512(Qwen_Lightning_Lora):
size = 512
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
def run_once(self, *args, **kwargs):
image = kwargs["image"][0]
w,h = image.size
real_w, real_h = calculate_dimensions(1024 * 1024, w / h)
down_w, down_h = calculate_dimensions(self.size * self.size, w / h)
image = image.resize((down_w, down_h))
kwargs["image"] = [image]
kwargs["vae_image_override"] = self.size * self.size
kwargs["width"] = real_w
kwargs["height"] = real_h
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse_1step_fbcache_055_downsize512")
class Qwen_Lightning_FA3_AoT_int8_fuse_1step_FBCache055_Downsize512(Qwen_Lightning_Lora):
size = 512
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.55,)
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
def run_once(self, *args, **kwargs):
image = kwargs["image"][0]
w,h = image.size
real_w, real_h = calculate_dimensions(1024 * 1024, w / h)
down_w, down_h = calculate_dimensions(self.size * self.size, w / h)
image = image.resize((down_w, down_h))
kwargs["image"] = [image]
kwargs["vae_image_override"] = self.size * self.size
kwargs["width"] = real_w
kwargs["height"] = real_h
kwargs["num_inference_steps"] = 1
return self.pipe(*args, **kwargs).images[0]
@ExperimentRegistry.register(name="qwen_lightning_fa3_aot_int8_fuse_4step_fbcache_055_downsize512")
class Qwen_Lightning_FA3_AoT_int8_fuse_4step_FBCache055_Downsize512(Qwen_Lightning_Lora):
size = 512
@ftimed
def optimize(self):
self.pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
self.pipe.transformer.fuse_qkv_projections()
self.pipe.transformer.check_fused_qkv()
apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.55,)
optimize_pipeline_(
self.pipe,
cache_compiled=self.config.cache_compiled,
quantize=True,
suffix="_fa3_fuse",
pipe_kwargs={
"image": [Image.new("RGB", (1024, 1024))],
"prompt":"prompt",
"num_inference_steps":4
}
)
def run_once(self, *args, **kwargs):
image = kwargs["image"][0]
w,h = image.size
real_w, real_h = calculate_dimensions(1024 * 1024, w / h)
down_w, down_h = calculate_dimensions(self.size * self.size, w / h)
image = image.resize((down_w, down_h))
kwargs["image"] = [image]
kwargs["vae_image_override"] = self.size * self.size
kwargs["width"] = real_w
kwargs["height"] = real_h
kwargs["num_inference_steps"] = 4
return self.pipe(*args, **kwargs).images[0] |