File size: 7,553 Bytes
f9abc90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179


from collections import OrderedDict
from PIL import Image
from torchao import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig, Int4WeightOnlyConfig, Int8DynamicActivationInt8WeightConfig, Int8WeightOnlyConfig, ModuleFqnToConfig, PerRow
from torchao.utils import get_model_size_in_bytes
from qwenimage.debug import ftimed, print_first_param
from qwenimage.experiments.experiments_qwen import ExperimentRegistry, QwenBaseExperiment
from qwenimage.models.attention_processors import QwenDoubleStreamAttnProcessorFA3
from qwenimage.optimization import simple_quantize_model


# ============================
# LINEAR / WEIGHTED LAYERS
# ============================

# ---- Vision branch ----

# Conv3d patch embed (often quantized like Linear)
VISION_PATCH_EMBED_LINEAR_REGEX = r"re:^model\.visual\.patch_embed\.proj$"

# Vision attention QKV and output projections (Linear)
VISION_ATTENTION_QKV_LINEAR_REGEX = (
    r"re:^model\.visual\.blocks\.\d+\.attn\.qkv$"
)
VISION_ATTENTION_OUT_LINEAR_REGEX = (
    r"re:^model\.visual\.blocks\.\d+\.attn\.proj$"
)

# Vision MLP projections (all Linear)
VISION_MLP_LINEAR_REGEX = (
    r"re:^model\.visual\.blocks\.\d+\.mlp\.(gate_proj|up_proj|down_proj)$"
)

# Vision patch merger MLP (Sequential: indices 0 and 2 are Linear)
VISION_MERGER_MLP_LINEAR_REGEX = (
    r"re:^model\.visual\.merger\.mlp\.(0|2)$"
)


# ---- Text / language branch ----

# Token embedding (optional: treat as linear for quantization)
TEXT_EMBED_LINEAR_REGEX = r"re:^model\.language_model\.embed_tokens$"

# Text attention Q, K, V, O projections (Linear)
TEXT_ATTENTION_QKV_LINEAR_REGEX = (
    r"re:^model\.language_model\.layers\.\d+\.self_attn\.(q_proj|k_proj|v_proj)$"
)
TEXT_ATTENTION_OUT_LINEAR_REGEX = (
    r"re:^model\.language_model\.layers\.\d+\.self_attn\.o_proj$"
)

# Text MLP projections (all Linear)
TEXT_MLP_LINEAR_REGEX = (
    r"re:^model\.language_model\.layers\.\d+\.mlp\.(gate_proj|up_proj|down_proj)$"
)

# LM head (Linear classifier / output proj)
LM_HEAD_LINEAR_REGEX = r"re:^lm_head$"



VISION_FIRST_BLOCK_REGEX = r"re:^model\.visual\.blocks\.0\..*$"
VISION_LAST_BLOCK_REGEX  = r"re:^model\.visual\.blocks\.31\..*$"

TEXT_FIRST_LAYER_REGEX   = r"re:^model\.language_model\.layers\.0\..*$"
TEXT_LAST_LAYER_REGEX    = r"re:^model\.language_model\.layers\.27\..*$"



@ExperimentRegistry.register(name="qwen_te_int8wo")
class Qwen_te_int8wo(QwenBaseExperiment):
    @ftimed
    def optimize(self):
        simple_quantize_model(self.pipe.text_encoder, "int8wo")

@ExperimentRegistry.register(name="qwen_te_int4wo")
class Qwen_te_int4wo(QwenBaseExperiment):
    @ftimed
    def optimize(self):
        simple_quantize_model(self.pipe.text_encoder, "int4wo")

@ExperimentRegistry.register(name="qwen_te_fp8row")
class Qwen_te_fp8row(QwenBaseExperiment):
    @ftimed
    def optimize(self):
        simple_quantize_model(self.pipe.text_encoder, "fp8row")

@ExperimentRegistry.register(name="qwen_te_int4wo_qkv")
class Qwen_te_int4wo_qkv(QwenBaseExperiment):
    @ftimed
    def optimize(self):
        module_fqn_to_config = ModuleFqnToConfig(
            OrderedDict([
                (VISION_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                ("_default",Int8WeightOnlyConfig(),),
            ])
        )
        print(f"original model size: {get_model_size_in_bytes(self.pipe.text_encoder) / 1024 / 1024} MB")
        quantize_(self.pipe.text_encoder, module_fqn_to_config)
        print_first_param(self.pipe.text_encoder)
        print(f"quantized model size: {get_model_size_in_bytes(self.pipe.text_encoder) / 1024 / 1024} MB")


@ExperimentRegistry.register(name="qwen_te_int4wo_linear")
class Qwen_te_int4wo_linear(QwenBaseExperiment):
    @ftimed
    def optimize(self):
        module_fqn_to_config = ModuleFqnToConfig(
            OrderedDict([
                (VISION_PATCH_EMBED_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (VISION_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (VISION_ATTENTION_OUT_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                # (VISION_MLP_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                # (VISION_MERGER_MLP_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_EMBED_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_ATTENTION_OUT_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                # (TEXT_MLP_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (LM_HEAD_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                ("_default",Int8WeightOnlyConfig(),),
            ])
        )
        print(f"original model size: {get_model_size_in_bytes(self.pipe.text_encoder) / 1024 / 1024} MB")
        quantize_(self.pipe.text_encoder, module_fqn_to_config)
        print_first_param(self.pipe.text_encoder)
        print(f"quantized model size: {get_model_size_in_bytes(self.pipe.text_encoder) / 1024 / 1024} MB")


@ExperimentRegistry.register(name="qwen_te_int4wo_linear_nofirstlast")
class Qwen_te_int4wo_linear_nofirstlast(QwenBaseExperiment):
    @ftimed
    def optimize(self):
        module_fqn_to_config = ModuleFqnToConfig(
            OrderedDict([
                (VISION_FIRST_BLOCK_REGEX, None),
                (VISION_LAST_BLOCK_REGEX, None),
                (TEXT_FIRST_LAYER_REGEX, None),
                (TEXT_LAST_LAYER_REGEX, None),
                (VISION_PATCH_EMBED_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (VISION_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (VISION_ATTENTION_OUT_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                # (VISION_MLP_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                # (VISION_MERGER_MLP_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_EMBED_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (TEXT_ATTENTION_OUT_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                # (TEXT_MLP_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                (LM_HEAD_LINEAR_REGEX,Int4WeightOnlyConfig(),),
                ("_default",Int8WeightOnlyConfig(),),
            ])
        )
        print(f"original model size: {get_model_size_in_bytes(self.pipe.text_encoder) / 1024 / 1024} MB")
        quantize_(self.pipe.text_encoder, module_fqn_to_config)
        print_first_param(self.pipe.text_encoder)
        print(f"quantized model size: {get_model_size_in_bytes(self.pipe.text_encoder) / 1024 / 1024} MB")


def quantize_text_encoder_int4wo_linear(model):
    module_fqn_to_config = ModuleFqnToConfig(
        OrderedDict([
            (VISION_PATCH_EMBED_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            (VISION_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            (VISION_ATTENTION_OUT_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            (TEXT_EMBED_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            (TEXT_ATTENTION_QKV_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            (TEXT_ATTENTION_OUT_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            (LM_HEAD_LINEAR_REGEX,Int4WeightOnlyConfig(),),
            ("_default",Int8WeightOnlyConfig(),),
        ])
    )
    print(f"original model size: {get_model_size_in_bytes(model) / 1024 / 1024} MB")
    quantize_(model, module_fqn_to_config)
    print_first_param(model)
    print(f"quantized model size: {get_model_size_in_bytes(model) / 1024 / 1024} MB")