Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,828 Bytes
26db3f0 0365768 26db3f0 0365768 26db3f0 0365768 26db3f0 0365768 26db3f0 0365768 26db3f0 0365768 26db3f0 0365768 26db3f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "faf9556d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/ubuntu/Qwen-Image-Edit-Angles\n"
]
}
],
"source": [
"%cd /home/ubuntu/Qwen-Image-Edit-Angles"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d74b1b7e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3/dist-packages/sklearn/utils/fixes.py:25: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" from pkg_resources import parse_version # type: ignore\n",
"2025-11-23 10:48:20.190181: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2025-11-23 10:48:20.204255: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"E0000 00:00:1763894900.221429 2465541 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"E0000 00:00:1763894900.227066 2465541 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"W0000 00:00:1763894900.240375 2465541 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1763894900.240390 2465541 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1763894900.240392 2465541 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1763894900.240394 2465541 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"2025-11-23 10:48:20.244577: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
},
{
"ename": "AttributeError",
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
]
},
{
"ename": "AttributeError",
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
]
},
{
"ename": "AttributeError",
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/.local/lib/python3.10/site-packages/google/api_core/_python_version_support.py:266: FutureWarning: You are using a Python version (3.10.12) which Google will stop supporting in new releases of google.api_core once it reaches its end of life (2026-10-04). Please upgrade to the latest Python version, or at least Python 3.11, to continue receiving updates for google.api_core past that date.\n",
" warnings.warn(message, FutureWarning)\n"
]
},
{
"ename": "AttributeError",
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
]
},
{
"ename": "AttributeError",
"evalue": "'MessageFactory' object has no attribute 'GetPrototype'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;31mAttributeError\u001b[0m: 'MessageFactory' object has no attribute 'GetPrototype'"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Skipping import of cpp extensions due to incompatible torch version 2.9.1+cu128 for torchao version 0.14.1 Please see https://github.com/pytorch/ao/issues/2919 for more info\n",
"TMA benchmarks will be running without grid constant TMA descriptor.\n",
"WARNING:bitsandbytes.cextension:Could not find the bitsandbytes CUDA binary at PosixPath('/usr/local/lib/python3.10/dist-packages/bitsandbytes/libbitsandbytes_cuda128.so')\n",
"ERROR:bitsandbytes.cextension:Could not load bitsandbytes native library: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /usr/local/lib/python3.10/dist-packages/bitsandbytes/libbitsandbytes_cpu.so)\n",
"Traceback (most recent call last):\n",
" File \"/usr/local/lib/python3.10/dist-packages/bitsandbytes/cextension.py\", line 85, in <module>\n",
" lib = get_native_library()\n",
" File \"/usr/local/lib/python3.10/dist-packages/bitsandbytes/cextension.py\", line 72, in get_native_library\n",
" dll = ct.cdll.LoadLibrary(str(binary_path))\n",
" File \"/usr/lib/python3.10/ctypes/__init__.py\", line 452, in LoadLibrary\n",
" return self._dlltype(name)\n",
" File \"/usr/lib/python3.10/ctypes/__init__.py\", line 374, in __init__\n",
" self._handle = _dlopen(self._name, mode)\n",
"OSError: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /usr/local/lib/python3.10/dist-packages/bitsandbytes/libbitsandbytes_cpu.so)\n",
"WARNING:bitsandbytes.cextension:\n",
"CUDA Setup failed despite CUDA being available. Please run the following command to get more information:\n",
"\n",
"python -m bitsandbytes\n",
"\n",
"Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them\n",
"to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes\n",
"and open an issue at: https://github.com/bitsandbytes-foundation/bitsandbytes/issues\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f70e31b9ba79496a921f0e7d0cddfed4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 7 files: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import os\n",
"import subprocess\n",
"from pathlib import Path\n",
"import argparse\n",
"\n",
"import yaml\n",
"import diffusers\n",
"\n",
"\n",
"from wandml.trainers.experiment_trainer import ExperimentTrainer\n",
"from wandml import WandDataPipe\n",
"import wandml\n",
"from wandml import WandAuth\n",
"from wandml import utils as wandml_utils\n",
"from wandml.trainers.datamodels import ExperimentTrainerParameters\n",
"from wandml.trainers.experiment_trainer import ExperimentTrainer\n",
"\n",
"\n",
"from qwenimage.finetuner import QwenLoraFinetuner\n",
"from qwenimage.sources import StyleSourceWithRandomRef, StyleImagetoImageSource\n",
"from qwenimage.task import TextToImageWithRefTask\n",
"from qwenimage.datamodels import QwenConfig\n",
"from qwenimage.foundation import QwenImageFoundation\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "18bf116a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'qwenimage.sources.StyleImagetoImageSource'> of len2\n"
]
}
],
"source": [
"src = StyleImagetoImageSource(\n",
" csv_path=\"/data/chatgpt-style-transfer-data/output/results.csv\",\n",
" base_dir=\"/data/chatgpt-style-transfer-data\",\n",
" style_title=\"Simpsons\",\n",
" data_range=[2, 35],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'qwenimage.sources.StyleImagetoImageSource'> of len33\n"
]
}
],
"source": [
"src = StyleImagetoImageSource(\n",
" csv_path=\"/data/chatgpt-style-transfer-data/output/results.csv\",\n",
" base_dir=\"/data/chatgpt-style-transfer-data\",\n",
" style_title=\"Simpsons\",\n",
" data_range=[0, 2],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7b70d58",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ba2e8778",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"from qwenimage.datasets import StyleSource\n",
"\n",
"\n",
"src = StyleSource(\"/data/styles-finetune-data-artistic/tarot\", \"<0001>\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "eda50bdf",
"metadata": {},
"outputs": [],
"source": [
"from wandml.data.tasks.text_to_image import TextToImageTask\n",
"\n",
"task = TextToImageTask()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/wand-ml/wandml/core/source.py:14: UserWarning: Deprecated: Use data_types instead of _data_types\n",
" warnings.warn(\"Deprecated: Use data_types instead of _data_types\")\n"
]
}
],
"source": [
"dp = WandDataPipe()\n",
"dp.add_source(src)\n",
"dp.set_task(task)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b98b9368",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4aecbbe70e8441c8f7f7a15ff5a95f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 7 files: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"self.device='cuda'\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94340bbd1c674a88ba287f7154815d6b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 5 files: 0%| | 0/5 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "44febcb836804a969fd7c2571f7830be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "379bfa34f1cb46ef9aa6c06b94a5437f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"`torch_dtype` is deprecated! Use `dtype` instead!\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "963f6022ee8c46ce9d36a02aad4bc739",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from qwenimage.datamodels import QwenConfig\n",
"from qwenimage.foundation import QwenImageFoundation\n",
"\n",
"config = QwenConfig()\n",
"foundation = QwenImageFoundation(config=config)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7646e8ce",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading Lora from None\n"
]
}
],
"source": [
"finetuner = QwenLoraFinetuner(foundation, config)\n",
"finetuner.load(None)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "47bcba68",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"foundation=<FoundationEnum.FLUX: 'flux'> instance_data_dir=None class_data_dir=None instance_prompt=None class_prompt=None num_class_images=10 output_dir='output' seed=None size=1024 center_crop=False train_batch_size=1 num_train_epochs=1 max_train_steps=None save_steps=1000 save_path=None gradient_accumulation_steps=1 learning_rate=0.001 learning_rate_1d=1e-06 scale_lr=False lr_scheduler='constant' lr_warmup_steps=0 base_lr=1e-05 max_lr=0.001 step_size_up=2000 cyclic_lr_mode=<CyclicLRMode.TRIANGULAR2: 'triangular2'> cyclic_lr_cycle_momentum=False optim=<OptimizerType.ADAMW: 'adamw'> adam_beta1=0.9 adam_beta2=0.999 adam_weight_decay=0.01 adam_epsilon=1e-08 max_grad_norm=1.0 mixed_precision='bf16' concepts_list=None modifier_tokens=None initializer_tokens=None checkpointing_steps=9999 resume_from_checkpoint=None train_text_encoder=True gcs_bucket=None topic_id='finetune-complete' concepts=None global_step=0 prior_loss_weight=1.0 wand_user_id='test' wand_model_id='testing' wand_model_bucket='wand-finetune' wand_project_name='wand-finetune' num_sample_images=5 prodigy_beta3=None prodigy_decouple=True prodigy_use_bias_correction=False prodigy_safeguard_warmup=False base_cache_dir=PosixPath('/data/wand_cache') num_validation_images=30 log_batch_steps=100 run_name=None record_training=True validation_steps=500 train_sigma_distribution='linear' inference_sigma_distribution='shift' quantize=False gradient_checkpointing=False compile=False lora_map_save_params=False log_model_steps=None resume_optimizer=False sample_steps=500 upload_optimizer=False early_stop=False preprocessing_epoch_len=128 train_regional=False preprocessing_epoch_repetitions=1 lora_rank=16 ema=False composite_reference=False train_color_fix=False num_workers=None wandb_entity='wand-tech' warmup_start_lr=0.0 lr_T_mult=1 lr_T_0=None logger_service='wandb' clearml_task_type='training' load_multi_view_lora=False train_max_sequence_length=512 train_dist='linear' train_shift=True inference_dist='linear' inference_shift=True static_mu=None loss_weight_dist=None\n"
]
}
],
"source": [
"trainer = ExperimentTrainer(foundation,dp,config)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d92855c1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33meleazhong\u001b[0m to \u001b[32mhttps://api.wandb.ai\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"wandb.init called with:\n",
" project: wand-finetune\n",
" entity: wand-tech\n",
" name: None\n",
" config: {'foundation': <FoundationEnum.FLUX: 'flux'>, 'instance_data_dir': None, 'class_data_dir': None, 'instance_prompt': None, 'class_prompt': None, 'num_class_images': 10, 'output_dir': 'output', 'seed': None, 'size': 1024, 'center_crop': False, 'train_batch_size': 1, 'num_train_epochs': 1, 'max_train_steps': None, 'save_steps': 1000, 'save_path': None, 'gradient_accumulation_steps': 1, 'learning_rate': 0.001, 'learning_rate_1d': 1e-06, 'scale_lr': False, 'lr_scheduler': 'constant', 'lr_warmup_steps': 0, 'base_lr': 1e-05, 'max_lr': 0.001, 'step_size_up': 2000, 'cyclic_lr_mode': <CyclicLRMode.TRIANGULAR2: 'triangular2'>, 'cyclic_lr_cycle_momentum': False, 'optim': <OptimizerType.ADAMW: 'adamw'>, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_weight_decay': 0.01, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'mixed_precision': 'bf16', 'concepts_list': None, 'modifier_tokens': None, 'initializer_tokens': None, 'checkpointing_steps': 9999, 'resume_from_checkpoint': None, 'train_text_encoder': True, 'gcs_bucket': None, 'topic_id': 'finetune-complete', 'concepts': None, 'global_step': 0, 'prior_loss_weight': 1.0, 'wand_user_id': 'test', 'wand_model_id': 'testing', 'wand_model_bucket': 'wand-finetune', 'wand_project_name': 'wand-finetune', 'num_sample_images': 5, 'prodigy_beta3': None, 'prodigy_decouple': True, 'prodigy_use_bias_correction': False, 'prodigy_safeguard_warmup': False, 'base_cache_dir': PosixPath('/data/wand_cache'), 'num_validation_images': 30, 'log_batch_steps': 100, 'run_name': None, 'record_training': True, 'validation_steps': 500, 'train_sigma_distribution': 'linear', 'inference_sigma_distribution': 'shift', 'quantize': False, 'gradient_checkpointing': False, 'compile': False, 'lora_map_save_params': False, 'log_model_steps': None, 'resume_optimizer': False, 'sample_steps': 500, 'upload_optimizer': False, 'early_stop': False, 'preprocessing_epoch_len': 128, 'train_regional': False, 'preprocessing_epoch_repetitions': 1, 'lora_rank': 16, 'ema': False, 'composite_reference': False, 'train_color_fix': False, 'num_workers': None, 'wandb_entity': 'wand-tech', 'warmup_start_lr': 0.0, 'lr_T_mult': 1, 'lr_T_0': None, 'logger_service': 'wandb', 'clearml_task_type': 'training', 'load_multi_view_lora': False, 'train_max_sequence_length': 512, 'train_dist': 'linear', 'train_shift': True, 'inference_dist': 'linear', 'inference_shift': True, 'static_mu': None, 'loss_weight_dist': None}\n",
" tags: None\n",
" kwargs: {'save_code': True}\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.23.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/home/ubuntu/Qwen-Image-Edit-Angles/wandb/run-20251122_181330-lg6f3z2h</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/wand-tech/wand-finetune/runs/lg6f3z2h' target=\"_blank\">graceful-galaxy-731</a></strong> to <a href='https://wandb.ai/wand-tech/wand-finetune' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/developer-guide' target=\"_blank\">docs</a>)<br>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/wand-tech/wand-finetune' target=\"_blank\">https://wandb.ai/wand-tech/wand-finetune</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/wand-tech/wand-finetune/runs/lg6f3z2h' target=\"_blank\">https://wandb.ai/wand-tech/wand-finetune/runs/lg6f3z2h</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using suggested max workers 26\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train: 0%| | 0/6 [00:00<?, ?it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Memory allocated: 55297.20 MB\n",
"Memory reserved: 55616.00 MB\n",
"Total memory: 81089.88 MB\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Preprocess Batch: 100%|ββββββββββ| 128/128 [00:16<00:00, 7.73it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Memory allocated: 56371.81 MB\n",
"Memory reserved: 56676.00 MB\n",
"Total memory: 81089.88 MB\n",
"Repetition: 0\n"
]
},
{
"ename": "RuntimeError",
"evalue": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/tmp/ipykernel_2236633/4032920361.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/wand-ml/wandml/utils/debug.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mDEBUG\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mstart_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mperf_counter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/wand-ml/wandml/trainers/experiment_trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"epoch\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 296\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"split\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"train\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 297\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msingle_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 298\u001b[0m \u001b[0mbatch_num\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 299\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mglobal_step\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/wand-ml/wandml/trainers/experiment_trainer.py\u001b[0m in \u001b[0;36msingle_step\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0maccelerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maccumulate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0maccelerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautocast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 336\u001b[0;31m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msingle_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 337\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mctimed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"accelerator.backward(loss)\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[0maccelerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/wand-ml/wandml/core/hooks.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmanager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_pre_hooks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmanager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_post_hooks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/Qwen-Image-Edit-Angles/qwenimage/foundation.py\u001b[0m in \u001b[0;36msingle_step\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx_0\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimestep_dist_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_train_t\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseq_len\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseq_len\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 192\u001b[0;31m \u001b[0mx_t\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1.0\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mx_0\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mx_1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 193\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[0ml_channels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransformer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0min_channels\u001b[0m \u001b[0;34m//\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mRuntimeError\u001b[0m: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"
]
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0eea7b23",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|