Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,994 Bytes
25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 e63ae25 1835c38 e63ae25 1835c38 e63ae25 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff b4df47c 25daeff b4df47c 52b011d e63ae25 52b011d 25daeff 1835c38 25daeff 1835c38 25daeff b4df47c 25daeff b4df47c 25daeff 1835c38 25daeff 1835c38 e63ae25 1835c38 e63ae25 1835c38 25daeff 1835c38 25daeff 1835c38 e63ae25 25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff 1835c38 25daeff 4cd7f21 25daeff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e5649df3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/ubuntu/Qwen-Image-Edit-Angles\n"
]
}
],
"source": [
"%cd /home/ubuntu/Qwen-Image-Edit-Angles"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/usr/lib/python3/dist-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.4\n",
" warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n",
"Skipping import of cpp extensions due to incompatible torch version 2.9.1+cu128 for torchao version 0.14.1 Please see https://github.com/pytorch/ao/issues/2919 for more info\n",
"TMA benchmarks will be running without grid constant TMA descriptor.\n",
"2025-11-15 00:36:46.660289: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2025-11-15 00:36:46.674159: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"E0000 00:00:1763167006.691103 1407426 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"E0000 00:00:1763167006.696561 1407426 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"W0000 00:00:1763167006.709712 1407426 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1763167006.709728 1407426 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1763167006.709731 1407426 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1763167006.709732 1407426 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"2025-11-15 00:36:46.713796: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"Fetching 7 files: 100%|ββββββββββ| 7/7 [00:00<00:00, 77467.36it/s]\n"
]
}
],
"source": [
"import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
"\n",
"from qwenimage.experiments.experiments_qwen import PipeInputs"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from qwenimage.experiment import ExperimentConfig\n",
"from qwenimage.experiments.experiments_qwen import ExperimentRegistry\n",
"\n",
"\n",
"experiment_names = [\n",
" \"qwen_base\",\n",
" \"qwen_lightning_fa3_aot_int8_fuse_4step_fbcache_055_downsize512\",\n",
" \"qwen_lightning_fa3_aot_int8_fuse_2step_fbcache_055_downsize512\",\n",
" \"qwen_lightning_fa3_aot_int8_fuse_1step_fbcache_055_downsize512\",\n",
"]\n",
"\n",
"report_dir = ExperimentConfig().report_dir\n",
"\n",
"experiment_outputs = {}\n",
"num_outputs = {}\n",
"for name in experiment_names:\n",
" output_dir = report_dir / f\"{name}_outputs\"\n",
" all_output_paths = sorted(list(output_dir.glob(\"*.jpg\")))\n",
" experiment_outputs[name] = all_output_paths\n",
" num_outputs[name] = len(all_output_paths)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "29077eb8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PosixPath('reports/qwen_base_outputs/000.jpg')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"experiment_outputs[\"qwen_base\"][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a591fdd6",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce90b6d0",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "601aa246",
"metadata": {},
"outputs": [],
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2aa95f51",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "30ded7b9",
"metadata": {},
"outputs": [],
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e09d431a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7ecb5a2",
"metadata": {},
"outputs": [],
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "41e36dc8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"720 input combinations\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saved comparison grid 1/32 to reports/comparison_grid_5/comparison_000.jpg\n",
"Saved comparison grid 2/32 to reports/comparison_grid_5/comparison_001.jpg\n",
"Saved comparison grid 3/32 to reports/comparison_grid_5/comparison_002.jpg\n",
"Saved comparison grid 4/32 to reports/comparison_grid_5/comparison_003.jpg\n",
"Saved comparison grid 5/32 to reports/comparison_grid_5/comparison_004.jpg\n",
"Saved comparison grid 6/32 to reports/comparison_grid_5/comparison_005.jpg\n",
"Saved comparison grid 7/32 to reports/comparison_grid_5/comparison_006.jpg\n",
"Saved comparison grid 8/32 to reports/comparison_grid_5/comparison_007.jpg\n",
"Saved comparison grid 9/32 to reports/comparison_grid_5/comparison_008.jpg\n",
"Saved comparison grid 10/32 to reports/comparison_grid_5/comparison_009.jpg\n",
"Saved comparison grid 11/32 to reports/comparison_grid_5/comparison_010.jpg\n",
"Saved comparison grid 12/32 to reports/comparison_grid_5/comparison_011.jpg\n",
"Saved comparison grid 13/32 to reports/comparison_grid_5/comparison_012.jpg\n",
"Saved comparison grid 14/32 to reports/comparison_grid_5/comparison_013.jpg\n",
"Saved comparison grid 15/32 to reports/comparison_grid_5/comparison_014.jpg\n",
"Saved comparison grid 16/32 to reports/comparison_grid_5/comparison_015.jpg\n",
"Saved comparison grid 17/32 to reports/comparison_grid_5/comparison_016.jpg\n",
"Saved comparison grid 18/32 to reports/comparison_grid_5/comparison_017.jpg\n",
"Saved comparison grid 19/32 to reports/comparison_grid_5/comparison_018.jpg\n",
"Saved comparison grid 20/32 to reports/comparison_grid_5/comparison_019.jpg\n",
"Saved comparison grid 21/32 to reports/comparison_grid_5/comparison_020.jpg\n",
"Saved comparison grid 22/32 to reports/comparison_grid_5/comparison_021.jpg\n",
"Saved comparison grid 23/32 to reports/comparison_grid_5/comparison_022.jpg\n",
"Saved comparison grid 24/32 to reports/comparison_grid_5/comparison_023.jpg\n",
"Saved comparison grid 25/32 to reports/comparison_grid_5/comparison_024.jpg\n",
"Saved comparison grid 26/32 to reports/comparison_grid_5/comparison_025.jpg\n",
"Saved comparison grid 27/32 to reports/comparison_grid_5/comparison_026.jpg\n",
"Saved comparison grid 28/32 to reports/comparison_grid_5/comparison_027.jpg\n",
"Saved comparison grid 29/32 to reports/comparison_grid_5/comparison_028.jpg\n",
"Saved comparison grid 30/32 to reports/comparison_grid_5/comparison_029.jpg\n",
"Saved comparison grid 31/32 to reports/comparison_grid_5/comparison_030.jpg\n",
"Saved comparison grid 32/32 to reports/comparison_grid_5/comparison_031.jpg\n",
"\n",
"All comparison grids saved to reports/comparison_grid_5\n"
]
}
],
"source": [
"import math\n",
"import textwrap\n",
"from pathlib import Path\n",
"\n",
"import matplotlib.font_manager as fm\n",
"import numpy as np\n",
"from PIL import Image\n",
"\n",
"# Configure Chinese font\n",
"font_path = Path(\"scripts/assets/STSong.ttf\")\n",
"chinese_font = fm.FontProperties(fname=str(font_path))\n",
"\n",
"comparison_dir = report_dir / \"comparison_grid_5\"\n",
"comparison_dir.mkdir(exist_ok=True, parents=True)\n",
"\n",
"# Create PipeInputs instance to access original images and prompts\n",
"pipe_inputs = PipeInputs(seed=42)\n",
"\n",
"comparable_outputs = min(num_outputs.values())\n",
"num_experiments = len(experiment_names)\n",
"\n",
"# For each output index, create a comparison grid\n",
"for idx in range(comparable_outputs):\n",
" # Get the original image and prompt for this index\n",
" inputs = pipe_inputs[idx]\n",
" original_image = inputs[\"image\"][0]\n",
" prompt = inputs[\"prompt\"]\n",
" \n",
" # Calculate grid size: +1 for original image\n",
" total_plots = num_experiments + 1\n",
" cols = int(math.ceil(math.sqrt(total_plots)))\n",
" if total_plots == 3:\n",
" cols = 3 # hard override for formatting\n",
" rows = int(math.ceil(total_plots / cols))\n",
" \n",
" fig, axes = plt.subplots(rows, cols, figsize=(6 * cols, 6 * rows))\n",
" \n",
" # Flatten axes array for easier indexing\n",
" if total_plots == 1:\n",
" axes = np.array([axes])\n",
" else:\n",
" axes = axes.flatten() if isinstance(axes, np.ndarray) else np.array([axes])\n",
" \n",
" # Plot original image in the first subplot\n",
" ax = axes[0]\n",
" ax.imshow(original_image)\n",
" ax.set_title(\"Original Image\", fontsize=14, fontweight='bold', color='blue')\n",
" ax.axis('off')\n",
" \n",
" # Plot each experiment's output for this index\n",
" for exp_idx, exp_name in enumerate(experiment_names):\n",
" ax = axes[exp_idx + 1] # +1 because first subplot is original image\n",
" \n",
" # Check if this experiment has an output at this index\n",
" if idx < num_outputs[exp_name]:\n",
" img_path = experiment_outputs[exp_name][idx]\n",
" img = Image.open(img_path)\n",
" ax.imshow(img)\n",
" ax.set_title(exp_name, fontsize=14, fontweight='bold')\n",
" else:\n",
" # No output for this experiment at this index\n",
" ax.text(0.5, 0.5, 'N/A', ha='center', va='center', fontsize=20)\n",
" ax.set_title(exp_name, fontsize=14, fontweight='bold', color='gray')\n",
" \n",
" ax.axis('off')\n",
" \n",
" # Hide any unused subplots\n",
" for plot_idx in range(total_plots, len(axes)):\n",
" axes[plot_idx].axis('off')\n",
" \n",
" # Wrap prompt text for better display\n",
" wrapped_prompt = '\\n'.join(textwrap.wrap(prompt, width=100))\n",
" \n",
" # Add a main title with the prompt\n",
" fig.suptitle(\n",
" f'Output Comparison - Index {idx:03d}\\nPrompt: {wrapped_prompt}',\n",
" fontsize=16,\n",
" fontweight='bold',\n",
" y=0.99,\n",
" fontproperties=chinese_font\n",
" )\n",
" \n",
" plt.tight_layout()\n",
" \n",
" # Save the figure\n",
" output_path = comparison_dir / f\"comparison_{idx:03d}.jpg\"\n",
" plt.savefig(output_path, dpi=150, bbox_inches='tight')\n",
" plt.close(fig)\n",
" \n",
" print(f\"Saved comparison grid {idx + 1}/{comparable_outputs} to {output_path}\")\n",
"\n",
"print(f\"\\nAll comparison grids saved to {comparison_dir}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "406c9749",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "244dfe0f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|