Spaces:
Running
on
Zero
Running
on
Zero
| import copy | |
| import math | |
| import random | |
| import os | |
| import tempfile | |
| import sys | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| import subprocess | |
| from qwenimage.models.attention_processors import QwenDoubleStreamAttnProcessorFA3 | |
| from qwenimage.optimization import optimize_pipeline_ | |
| GIT_TOKEN = os.environ.get("GIT_TOKEN") | |
| import subprocess | |
| # cmd = f"pip install git+https://eleazhong:{GIT_TOKEN}@github.com/wand-ai/wand-ml" | |
| # proc = subprocess.Popen( | |
| # cmd, | |
| # stdout=subprocess.PIPE, | |
| # stderr=subprocess.STDOUT, | |
| # text=True, # or encoding="utf-8" on older Python | |
| # bufsize=1, | |
| # ) | |
| # for line in proc.stdout: | |
| # print(line, end="") # already has newline | |
| # proc.wait() | |
| # print("Exit code:", proc.returncode) | |
| from qwenimage.debug import ctimed | |
| from qwenimage.models.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.models.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.experiments.quantize_experiments import conf_fp8darow_nolast, quantize_transformer_fp8darow_nolast | |
| # --- Model Loading --- | |
| # foundation = QwenImageFoundation(QwenConfig( | |
| # vae_image_size=1024 * 1024, | |
| # regression_base_pipe_steps=4, | |
| # )) | |
| # finetuner = QwenLoraFinetuner(foundation, foundation.config) | |
| # finetuner.load("checkpoints/reg-mse-pixel-lpips_005000", lora_rank=32) | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| transformer=QwenImageTransformer2DModel.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map=device | |
| ), | |
| torch_dtype=dtype, | |
| ) | |
| pipe = pipe.to(device=device, dtype=dtype) | |
| pipe.load_lora_weights( | |
| "checkpoints/distill_5k_lora.safetensors", | |
| adapter_name="fast_5k", | |
| ) | |
| pipe.set_adapters(["fast_5k"], adapter_weights=[1.0]) | |
| pipe.fuse_lora(adapter_names=["fast_5k"], lora_scale=1.0) | |
| pipe.unload_lora_weights() | |
| def optim_pipe(): | |
| print(f"func cuda: {torch.cuda.is_available()=}") | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| pipe.transformer.fuse_qkv_projections() | |
| pipe.transformer.check_fused_qkv() | |
| optimize_pipeline_( | |
| pipe, | |
| cache_compiled=True, | |
| quantize=True, | |
| suffix="_fp8darow_nolast_fa3_fast5k", | |
| quantize_config=conf_fp8darow_nolast(), | |
| pipe_kwargs={ | |
| "image": [Image.new("RGB", (1024, 1024))], | |
| "prompt":"prompt", | |
| "num_inference_steps":2, | |
| } | |
| ) | |
| optim_pipe() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def run_pipe( | |
| image, | |
| prompt, | |
| num_runs, | |
| seed, | |
| randomize_seed, | |
| num_inference_steps, | |
| shift, | |
| prompt_cached, | |
| ): | |
| with ctimed("pre pipe"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Choose input image (prefer uploaded, else last output) | |
| pil_images = [] | |
| if image is None: | |
| raise gr.Error("Please upload an image first.") | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| # finetuner.enable() | |
| pipe.scheduler.config["base_shift"] = shift | |
| pipe.scheduler.config["max_shift"] = shift | |
| gallery_images = [] | |
| for i in range(num_runs): | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| vae_image_override=1024 * 1024, #512 * 512, | |
| latent_size_override=1024 * 1024, | |
| prompt_cached=prompt_cached, | |
| return_dict=True, | |
| ).images[0] | |
| prompt_cached = True | |
| gallery_images.append(result) | |
| yield gallery_images, seed, prompt_cached | |
| # --- UI --- | |
| def reset_prompt_cache(): | |
| return False | |
| with gr.Blocks(theme=gr.themes.Citrus()) as demo: | |
| gr.Markdown("Qwen Image Demo") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Input Image", type="pil") | |
| prompt = gr.Textbox(label="Prompt", placeholder="Prompt", lines=2) | |
| num_runs = gr.Slider(label="Run Consecutively", minimum=0, maximum=100, step=1, value=4) | |
| run_btn = gr.Button("Generate", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| prompt_cached = gr.Checkbox(label="Auto-Cached embeds", value=False) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=2) | |
| shift = gr.Slider(label="Timestep Shift", minimum=0.0, maximum=4.0, step=0.1, value=2.0) | |
| with gr.Column(): | |
| result = gr.Gallery( | |
| label="Output Image", | |
| interactive=False, | |
| columns=2, | |
| height=800, | |
| object_fit="scale-down", | |
| ) | |
| inputs = [ | |
| image, | |
| prompt, | |
| num_runs, | |
| seed, | |
| randomize_seed, | |
| num_inference_steps, | |
| shift, | |
| prompt_cached, | |
| ] | |
| outputs = [result, seed, prompt_cached] | |
| run_event = run_btn.click( | |
| fn=run_pipe, | |
| inputs=inputs, | |
| outputs=outputs | |
| ) | |
| image.upload( | |
| fn=reset_prompt_cache, | |
| inputs=[], | |
| outputs=[prompt_cached], | |
| ) | |
| prompt.input( | |
| fn=reset_prompt_cache, | |
| inputs=[], | |
| outputs=[prompt_cached], | |
| ) | |
| demo.launch() |