{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "9c480696", "metadata": {}, "outputs": [], "source": [ "%cd /home/ubuntu/Qwen-Image-Edit-Angles" ] }, { "cell_type": "code", "execution_count": null, "id": "671fc929", "metadata": {}, "outputs": [], "source": [ "import os\n", "import subprocess\n", "from pathlib import Path\n", "import argparse\n", "import warnings\n", "\n", "import yaml\n", "import diffusers\n", "\n", "\n", "from wandml.trainers.experiment_trainer import ExperimentTrainer\n", "from wandml import WandDataPipe\n", "import wandml\n", "from wandml import WandAuth\n", "from wandml import utils as wandml_utils\n", "from wandml.trainers.datamodels import ExperimentTrainerParameters\n", "from wandml.trainers.experiment_trainer import ExperimentTrainer\n", "\n", "\n", "from qwenimage.finetuner import QwenLoraFinetuner\n", "from qwenimage.sources import EditingSource, RegressionSource, StyleSourceWithRandomRef, StyleImagetoImageSource\n", "from qwenimage.task import RegressionTask, TextToImageWithRefTask\n", "from qwenimage.datamodels import QwenConfig\n", "from qwenimage.foundation import QwenImageFoundation, QwenImageRegressionFoundation\n" ] }, { "cell_type": "code", "execution_count": null, "id": "6a646ed7", "metadata": {}, "outputs": [], "source": [ "src = EditingSource(\n", " data_dir=\"/data/CrispEdit\",\n", " total_per=10,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "35dda5f4", "metadata": {}, "outputs": [], "source": [ "config = QwenConfig(\n", " training_type=\"regression\",\n", " regression_base_pipe_steps=8,\n", ")\n", "foundation = QwenImageRegressionFoundation(config=config)\n", "# finetuner = QwenLoraFinetuner(foundation, config)\n", "# finetuner.load(\"/data/checkpoints/reg-mse-pixel-mse_015000\", config.lora_rank)" ] }, { "cell_type": "code", "execution_count": null, "id": "8d5ddfa5", "metadata": {}, "outputs": [], "source": [ "src[0]" ] }, { "cell_type": "code", "execution_count": 9, "id": "264070a6", "metadata": {}, "outputs": [], "source": [ "foundation.config.regression_base_pipe_steps = 4\n", "\n", "inp = src[100]\n", "\n", "out = foundation.base_pipe(foundation.INPUT_MODEL(\n", " prompt=inp[0],\n", " image=[inp[2]],\n", "))\n", "out" ] }, { "cell_type": "code", "execution_count": 10, "id": "46a09a41", "metadata": {}, "outputs": [], "source": [ "print(inp[0])\n", "inp[2]" ] }, { "cell_type": "code", "execution_count": 11, "id": "da4157ea", "metadata": {}, "outputs": [], "source": [ "out[0]" ] }, { "cell_type": "code", "execution_count": null, "id": "7446e6b3", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }