elismasilva commited on
Commit
660c6ca
·
0 Parent(s):

first commit

Browse files
Files changed (10) hide show
  1. .gitattributes +35 -0
  2. .gitignore +14 -0
  3. README.md +114 -0
  4. app.py +755 -0
  5. infer.py +77 -0
  6. pipeline_z_image_mod.py +214 -0
  7. prompt_check.py +30 -0
  8. requirements.txt +17 -0
  9. requirements_local.txt +21 -0
  10. style.css +246 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ *.py[cod]
3
+ mod_tests/
4
+ /.vs
5
+ .vscode/
6
+ .idea/
7
+ venv/
8
+ .venv/
9
+ *.log
10
+ .DS_Store
11
+ .gradio
12
+ download.py
13
+ bk
14
+ outputs/
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Panorama Z-Image Turbo
3
+ emoji: 🏞️
4
+ colorFrom: red
5
+ colorTo: orange
6
+ sdk: gradio
7
+ sdk_version: 5.50.0
8
+ app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ short_description: Create stunning panoramas with Z-Image-Turbo.
12
+ ---
13
+
14
+ # Panorama Z-Image Turbo 🏞️✨
15
+
16
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/elismasilva/z-image-panorama)
17
+
18
+ Create stunning, seamless panoramic images by combining multiple distinct scenes with the power of the **Z-Image-Turbo** model. This application uses an advanced "Mixture of Diffusers" tiling pipeline to generate high-resolution compositions from left, center, and right text prompts, even on memory-constrained hardware, thanks to GGUF model support.
19
+
20
+ ![Example Panorama Image](https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/chineese%20young%20woman.png)
21
+
22
+ ## What is Panorama Z-Image Turbo?
23
+
24
+ Panorama Z-Image Turbo is a creative tool that leverages a sophisticated tiling mechanism to generate a single, wide-format image from three separate text prompts. Instead of stretching a single concept, you can describe different but related scenes for the left, center, and right portions of the image. The pipeline then intelligently generates each part and seamlessly blends them together.
25
+
26
+ This is ideal for:
27
+ * **Creating expansive cityscapes or landscapes:** Describe a bustling street that transitions to a central plaza, which then leads to a quiet park.
28
+ * **Composing complex scenes:** Place different characters or objects side-by-side in a shared, coherent environment.
29
+ * **Generating ultra-wide art:** Create unique, high-resolution images perfect for wallpapers or digital art.
30
+ * **Multi-language creation:** With built-in translation, you can write prompts in English, Korean, or Chinese.
31
+
32
+ The core technology uses a custom `ZImageMoDTilingPipeline` built on the Diffusers library. It has been meticulously adapted to the unique architecture of the `ZImageTransformer2DModel`, correctly handling its 16-channel latent space and specific input tensor format.
33
+
34
+ ### Key Features
35
+ * **Multi-Prompt Composition:** Control the left, center, and right of your image with unique prompts.
36
+ * **GGUF Transformer Support:** Utilizes a quantized GGUF version of the transformer, significantly reducing VRAM usage and making it possible to run on consumer GPUs.
37
+ * **Seamless Stitching:** Uses advanced blending methods (Cosine or Gaussian) to eliminate visible seams between tiles.
38
+ * **High-Resolution Output:** Generates images far wider than what a standard pipeline can handle in a single pass.
39
+ * **Efficient Memory Management:** Employs `diffusers`' standard CPU offloading to manage memory for non-transformer components.
40
+ * **Multi-Language Prompts:** Supports on-the-fly translation for prompts written in Korean and Chinese.
41
+
42
+ ---
43
+
44
+ ## Running the App Locally
45
+
46
+ Follow these steps to run the Gradio application on your own machine.
47
+
48
+ ### 1. Prerequisites
49
+ * Python 3.10+
50
+ * Git and Git LFS installed.
51
+
52
+ ### 2. Clone the Repository
53
+ ```bash
54
+ git clone https://huggingface.co/spaces/elismasilva/z-image-panorama
55
+ cd z-image-panorama
56
+ ```
57
+
58
+ ### 3. Set Up a Virtual Environment (Recommended)
59
+ ```bash
60
+ # Windows
61
+ python -m venv venv
62
+ .\venv\Scripts\activate
63
+
64
+ # macOS / Linux
65
+ python3 -m venv venv
66
+ source venv/bin/activate
67
+ ```
68
+
69
+ ### 4. Install Dependencies
70
+ ```bash
71
+ pip install -r requirements.txt
72
+ ```
73
+
74
+ ### 5. Configure Local Model Paths (Optional)
75
+ The app is configured to download models from the Hugging Face Hub by default. For faster startup and offline use, you can use local models by setting environment variables.
76
+
77
+ For example, if you have the GGUF model in `F:\models\Z-Image-Turbo`:
78
+ ```bash
79
+ # Windows CMD
80
+ set GGUF_LOCAL_DIR=F:\models\Z-Image-Turbo
81
+
82
+ # Windows PowerShell
83
+ $env:GGUF_LOCAL_DIR="F:\models\Z-Image-Turbo"
84
+
85
+ # Linux/macOS
86
+ export GGUF_LOCAL_DIR=/path/to/your/models/Z-Image-Turbo
87
+ ```
88
+
89
+ ### 6. Run the Gradio App
90
+ ```bash
91
+ python app.py
92
+ ```
93
+ The application will start and provide a local URL (usually `http://127.0.0.1:7860`) that you can open in your web browser.
94
+
95
+ ---
96
+
97
+ ## Using the Command-Line Script (`infer.py`)
98
+
99
+ The `infer.py` script allows you to test the pipeline directly from the command line.
100
+
101
+ ### 1. Configure the Script
102
+ Open `infer.py` and modify the parameters inside the `main()` function, such as the `prompt_grid`, `target_height`, `target_width`, etc., to match your desired output.
103
+
104
+ ### 2. Run the Script
105
+ Execute the script from your terminal:
106
+ ```bash
107
+ python infer.py
108
+ ```
109
+ The script will print its progress to the console, including the `tqdm` progress bar, and save the final image to the `outputs/` directory.
110
+
111
+ ## Acknowledgements
112
+ * **Alibaba Tongyi-MAI Team** for the powerful Z-Image Turbo model.
113
+ * The original authors of the **Mixture of Diffusers** technique.
114
+ * **Hugging Face** for the `diffusers` library and the Spaces platform.
app.py ADDED
@@ -0,0 +1,755 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import os
4
+ import random
5
+ import re
6
+ import numpy as np
7
+ import torch
8
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
9
+
10
+ # Import the custom tiling pipeline and its components
11
+ from pipeline_z_image_mod import ZImageMoDTilingPipeline
12
+ from diffusers import (
13
+ AutoencoderKL,
14
+ FlowMatchEulerDiscreteScheduler,
15
+ GGUFQuantizationConfig,
16
+ )
17
+ from diffusers.models import ZImageTransformer2DModel
18
+ from huggingface_hub import hf_hub_download
19
+
20
+ # Import the safety checker function
21
+ try:
22
+ from prompt_check import is_unsafe_prompt
23
+
24
+ UNSAFE_CHECK_AVAILABLE = True
25
+ except ImportError:
26
+ print("Warning: 'prompt_check.py' not found. NSFW prompt check will be disabled.")
27
+ UNSAFE_CHECK_AVAILABLE = False
28
+
29
+ def is_unsafe_prompt(*args, **kwargs):
30
+ return False
31
+
32
+
33
+ # 1. Environment Variables for Model Paths
34
+ # Base model for VAE, text_encoder, tokenizer
35
+ BASE_MODEL_ID = os.getenv("BASE_MODEL_ID", "Tongyi-MAI/Z-Image-Turbo")
36
+ # GGUF model for the transformer
37
+ GGUF_REPO_ID = os.getenv("GGUF_REPO_ID", "jayn7/Z-Image-Turbo-GGUF")
38
+ GGUF_FILENAME = os.getenv("GGUF_FILENAME", "z_image_turbo-Q4_K_M.gguf")
39
+ GGUF_LOCAL_DIR = os.getenv(
40
+ "GGUF_LOCAL_DIR", None
41
+ ) # Set this path for local use, e.g., "F:\\models\\Z-Image-Turbo"
42
+ USE_SPACES_ENV = os.getenv("USE_SPACES", "false").lower()
43
+ USE_SPACES = USE_SPACES_ENV not in ("false", "0", "no", "none")
44
+
45
+ # System prompt for the safety checker
46
+ UNSAFE_PROMPT_CHECK = os.getenv("UNSAFE_PROMPT_CHECK")
47
+ MAX_SEED = np.iinfo(np.int32).max
48
+
49
+ # 2. Load Models (GGUF + Standard Components)
50
+ print("--- Loading Models ---")
51
+ device = "cuda" if torch.cuda.is_available() else "cpu"
52
+
53
+ print("Loading VAE...")
54
+ if USE_SPACES:
55
+ vae = AutoencoderKL.from_pretrained(
56
+ BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.bfloat16
57
+ ).to(device)
58
+ else:
59
+ vae = AutoencoderKL.from_pretrained(
60
+ BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.bfloat16
61
+ )
62
+
63
+ print("Loading Text Encoder and Tokenizer...")
64
+ if USE_SPACES:
65
+ text_encoder = AutoModelForCausalLM.from_pretrained(
66
+ BASE_MODEL_ID, subfolder="text_encoder", dtype=torch.bfloat16
67
+ ).to(device)
68
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, subfolder="tokenizer")
69
+ else:
70
+ text_encoder = AutoModelForCausalLM.from_pretrained(
71
+ BASE_MODEL_ID, subfolder="text_encoder", dtype=torch.bfloat16
72
+ )
73
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, subfolder="tokenizer")
74
+
75
+ print(f"Loading Transformer from GGUF: {GGUF_REPO_ID}/{GGUF_FILENAME}...")
76
+ transformer_path = (
77
+ hf_hub_download(
78
+ GGUF_REPO_ID,
79
+ GGUF_FILENAME,
80
+ local_dir=GGUF_LOCAL_DIR,
81
+ local_dir_use_symlinks=False,
82
+ )
83
+ if GGUF_LOCAL_DIR
84
+ else hf_hub_download(GGUF_REPO_ID, GGUF_FILENAME)
85
+ )
86
+
87
+ if USE_SPACES:
88
+ transformer = ZImageTransformer2DModel.from_single_file(
89
+ transformer_path,
90
+ quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
91
+ dtype=torch.bfloat16,
92
+ ).to(device)
93
+ else:
94
+ transformer = ZImageTransformer2DModel.from_single_file(
95
+ transformer_path,
96
+ quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
97
+ dtype=torch.bfloat16,
98
+ )
99
+
100
+
101
+ # 3. Assemble the Tiling Pipeline
102
+ print("\nAssembling the ZImageMoDTilingPipeline...")
103
+ scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3.0)
104
+ if USE_SPACES:
105
+ pipe = ZImageMoDTilingPipeline(
106
+ vae=vae,
107
+ text_encoder=text_encoder,
108
+ tokenizer=tokenizer,
109
+ scheduler=scheduler,
110
+ transformer=transformer,
111
+ ).to(device)
112
+ else:
113
+ pipe = ZImageMoDTilingPipeline(
114
+ vae=vae,
115
+ text_encoder=text_encoder,
116
+ tokenizer=tokenizer,
117
+ scheduler=scheduler,
118
+ transformer=transformer,
119
+ )
120
+
121
+ print("Enabling model CPU offload...")
122
+ pipe.enable_model_cpu_offload()
123
+
124
+ # Load Translation Models
125
+ print("Loading translation models...")
126
+ try:
127
+ ko_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
128
+ zh_en_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
129
+ except Exception as e:
130
+ ko_en_translator, zh_en_translator = None, None
131
+ print(f"Warning: Could not load translation models: {e}")
132
+
133
+ print("Pipeline loaded and ready.")
134
+
135
+
136
+ # Helper Functions
137
+ def translate_prompt(text: str, language: str) -> str:
138
+ """Translates text to English if the selected language is not English."""
139
+ if language == "English" or not text.strip():
140
+ return text
141
+ translated = text
142
+ if (
143
+ language == "Korean"
144
+ and ko_en_translator
145
+ and any("\uac00" <= char <= "\ud7a3" for char in text)
146
+ ):
147
+ translated = ko_en_translator(text)[0]["translation_text"]
148
+ elif (
149
+ language == "Chinese"
150
+ and zh_en_translator
151
+ and any("\u4e00" <= char <= "\u9fff" for char in text)
152
+ ):
153
+ translated = zh_en_translator(text)[0]["translation_text"]
154
+ return translated
155
+
156
+
157
+ def create_hdr_effect(image, hdr_strength):
158
+ if hdr_strength == 0:
159
+ return image
160
+ from PIL import ImageEnhance, Image
161
+
162
+ if isinstance(image, Image.Image):
163
+ image = np.array(image)
164
+ from scipy.ndimage import gaussian_filter
165
+
166
+ blurred = gaussian_filter(image, sigma=5)
167
+ sharpened = np.clip(image + hdr_strength * (image - blurred), 0, 255).astype(
168
+ np.uint8
169
+ )
170
+ pil_img = Image.fromarray(sharpened)
171
+ converter = ImageEnhance.Color(pil_img)
172
+ return converter.enhance(1 + hdr_strength)
173
+
174
+
175
+ @spaces.GPU(duration=120)
176
+ def generate_z_image_panorama(
177
+ left_prompt,
178
+ center_prompt,
179
+ right_prompt,
180
+ left_gs,
181
+ center_gs,
182
+ right_gs,
183
+ overlap_pixels,
184
+ steps,
185
+ shift,
186
+ generation_seed,
187
+ tile_weighting_method,
188
+ <<<<<<< HEAD
189
+ prompt_language,
190
+ =======
191
+ prompt_language,
192
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
193
+ target_height,
194
+ target_width,
195
+ hdr,
196
+ randomize_seed,
197
+ progress=gr.Progress(track_tqdm=True),
198
+ ):
199
+ """
200
+ Generate a panoramic image using the Z-Image Turbo model with tiling and composition.
201
+ Args:
202
+ left_prompt (str): Text prompt for the left section of the panorama.
203
+ center_prompt (str): Text prompt for the center section of the panorama.
204
+ right_prompt (str): Text prompt for the right section of the panorama.
205
+ left_gs (float): Guidance scale for the left tile.
206
+ center_gs (float): Guidance scale for the center tile.
207
+ right_gs (float): Guidance scale for the right tile.
208
+ overlap_pixels (int): Number of pixels to overlap between tiles.
209
+ steps (int): Number of inference steps for generation.
210
+ shift (float): Time Shift.
211
+ generation_seed (int): Random seed for reproducibility.
212
+ tile_weighting_method (str): Method for weighting overlapping tile regions.
213
+ prompt_language (str): Language code for prompt translation.
214
+ target_height (int): Height of the generated panorama in pixels.
215
+ target_width (int): Width of the generated panorama in pixels.
216
+ hdr (float): HDR effect intensity.
217
+ randomize_seed (boolean): Not used.
218
+ progress (gr.Progress): Gradio progress tracker.
219
+ Returns:
220
+ PIL.Image: The generated panoramic image with optional HDR effect applied.
221
+ """
222
+ if not left_prompt or not center_prompt or not right_prompt:
223
+ gr.Info("⚡️ Prompts must be provided!")
224
+ return gr.skip()
225
+ # Safety Check
226
+ prompts_to_check = [left_prompt, center_prompt, right_prompt]
227
+ for p in prompts_to_check:
228
+ if UNSAFE_CHECK_AVAILABLE and is_unsafe_prompt(
229
+ pipe.text_encoder,
230
+ device,
231
+ pipe.tokenizer,
232
+ system_prompt=UNSAFE_PROMPT_CHECK,
233
+ user_prompt=p,
234
+ ):
235
+ raise gr.Error(
236
+ f"Unsafe prompt detected. Please modify your prompt and try again."
237
+ )
238
+
239
+ generator = torch.Generator("cuda").manual_seed(generation_seed)
240
+ pipe.scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=shift)
241
+
242
+ final_height, final_width = int(target_height), int(target_width)
243
+
244
+ translated_left = translate_prompt(left_prompt, prompt_language)
245
+ translated_center = translate_prompt(center_prompt, prompt_language)
246
+ translated_right = translate_prompt(right_prompt, prompt_language)
247
+
248
+ image = pipe(
249
+ prompt=[[translated_left, translated_center, translated_right]],
250
+ height=final_height,
251
+ width=final_width,
252
+ num_inference_steps=steps,
253
+ guidance_scale_tiles=[[left_gs, center_gs, right_gs]],
254
+ tile_overlap=overlap_pixels,
255
+ tile_weighting_method=tile_weighting_method,
256
+ generator=generator,
257
+ ).images[0]
258
+
259
+ return create_hdr_effect(image, hdr)
260
+
261
+
262
+ def calculate_tile_size(target_height, target_width, overlap_pixels):
263
+ """
264
+ Calculate tile dimensions for panoramic image generation.
265
+
266
+ Args:
267
+ target_height (int): The target height of the final panoramic image in pixels.
268
+ target_width (int): The target width of the final panoramic image in pixels.
269
+ overlap_pixels (int): The number of overlapping pixels between adjacent tiles.
270
+
271
+ Returns:
272
+ tuple: A tuple of 2 gr.update objects containing:
273
+ - final_height: Final panorama height after tiling
274
+ - final_width: Final panorama width after tiling
275
+ """
276
+ num_cols = 3
277
+ num_rows = 1
278
+ tile_width = (target_width + (num_cols - 1) * overlap_pixels) // num_cols
279
+ tile_height = (target_height + (num_rows - 1) * overlap_pixels) // num_rows
280
+ tile_width -= tile_width % 16
281
+ tile_height -= tile_height % 16
282
+ final_width = tile_width * num_cols - (num_cols - 1) * overlap_pixels
283
+ final_height = tile_height * num_rows - (num_rows - 1) * overlap_pixels
284
+ return (
285
+ gr.update(value=final_height),
286
+ gr.update(value=final_width),
287
+ )
288
+
289
+
290
+ def randomize_seed_fn(generation_seed: int, randomize_seed: bool) -> int:
291
+ if randomize_seed:
292
+ return random.randint(0, MAX_SEED)
293
+ return generation_seed
294
+
295
+
296
+ def run_for_examples(
297
+ left_prompt,
298
+ center_prompt,
299
+ right_prompt,
300
+ left_gs,
301
+ center_gs,
302
+ right_gs,
303
+ overlap_pixels,
304
+ steps,
305
+ shift,
306
+ generation_seed,
307
+ <<<<<<< HEAD
308
+ tile_weighting_method,
309
+ =======
310
+ tile_weighting_method,
311
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
312
+ target_height,
313
+ target_width,
314
+ hdr,
315
+ randomize_seed
316
+ ):
317
+ return generate_z_image_panorama(
318
+ left_prompt,
319
+ center_prompt,
320
+ right_prompt,
321
+ left_gs,
322
+ center_gs,
323
+ right_gs,
324
+ overlap_pixels,
325
+ steps,
326
+ shift,
327
+ generation_seed,
328
+ tile_weighting_method,
329
+ <<<<<<< HEAD
330
+ "English",
331
+ =======
332
+ "English",
333
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
334
+ target_height,
335
+ target_width,
336
+ hdr,
337
+ randomize_seed
338
+ )
339
+
340
+
341
+ def clear_result():
342
+ return gr.update(value=None)
343
+
344
+
345
+ def update_dimensions_from_preset(resolution_preset):
346
+ """Updates the width and height sliders based on a preset string."""
347
+ match = re.search(r"(\d+)\s*[x]\s*(\d+)", resolution_preset)
348
+ if match:
349
+ width, height = int(match.group(1)), int(match.group(2))
350
+ return gr.update(value=width), gr.update(value=height)
351
+ return gr.update(), gr.update()
352
+
353
+
354
+ # UI Layout
355
+ theme = gr.themes.Default(
356
+ primary_hue="red", secondary_hue="orange", neutral_hue="gray"
357
+ ).set(
358
+ body_background_fill="*neutral_100",
359
+ body_background_fill_dark="*neutral_900",
360
+ body_text_color="*neutral_900",
361
+ body_text_color_dark="*neutral_100",
362
+ panel_background_fill="*neutral_800",
363
+ panel_background_fill_dark="*neutral_900",
364
+ input_background_fill="white",
365
+ input_background_fill_dark="*neutral_800",
366
+ button_primary_background_fill="*primary_500",
367
+ button_primary_background_fill_dark="*primary_700",
368
+ button_primary_text_color="white",
369
+ button_primary_text_color_dark="white",
370
+ button_secondary_background_fill="*secondary_500",
371
+ button_secondary_background_fill_dark="*secondary_700",
372
+ button_secondary_text_color="white",
373
+ button_secondary_text_color_dark="white",
374
+ )
375
+
376
+ css_code = ""
377
+
378
+ try:
379
+ with open("./style.css", "r", encoding="utf-8") as f:
380
+ css_code += f.read() + "\n"
381
+ except FileNotFoundError:
382
+ pass
383
+
384
+ title = """<h1 align="center">Panorama Z-Image 🏞️✨</h1>
385
+ <div style="text-align: center;">
386
+ <span>Create panoramic compositions with Z-Image-Turbo.</span>
387
+ </div>
388
+ """
389
+ # Adapted panoramic resolutions
390
+ PANORAMIC_RESOLUTIONS = [
391
+ "2048x1024 (2:1)",
392
+ "2560x1024 (2.5:1)",
393
+ "3072x1024 (3:1)",
394
+ "2304x896 ( ~2.5:1)",
395
+ "2880x1152 (~2.5:1)",
396
+ "3840x1536 (2.5:1)",
397
+ ]
398
+
399
+ with gr.Blocks(theme=theme, css=css_code, title="Panorama Z-Image") as app:
400
+ gr.Markdown(title)
401
+ with gr.Row():
402
+ with gr.Column(scale=7):
403
+ generate_button = gr.Button("Generate", variant="primary")
404
+ with gr.Row():
405
+ with gr.Column(scale=1):
406
+ gr.Markdown("### Left Region")
407
+ left_prompt = gr.Textbox(lines=4, label="Prompt (Left)")
408
+ left_gs = gr.Slider(
409
+ minimum=0.0,
410
+ maximum=10.0,
411
+ value=0.0,
412
+ step=0.1,
413
+ label="Left Guidance",
414
+ <<<<<<< HEAD
415
+ visible=False,
416
+ =======
417
+ visible=False
418
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
419
+ )
420
+ with gr.Column(scale=1):
421
+ gr.Markdown("### Center Region")
422
+ center_prompt = gr.Textbox(lines=4, label="Prompt (Center)")
423
+ center_gs = gr.Slider(
424
+ minimum=0.0,
425
+ maximum=10.0,
426
+ value=0.0,
427
+ step=0.1,
428
+ label="Center Guidance",
429
+ <<<<<<< HEAD
430
+ visible=False,
431
+ =======
432
+ visible=False
433
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
434
+ )
435
+ with gr.Column(scale=1):
436
+ gr.Markdown("### Right Region")
437
+ right_prompt = gr.Textbox(lines=4, label="Prompt (Right)")
438
+ right_gs = gr.Slider(
439
+ minimum=0.0,
440
+ maximum=10.0,
441
+ value=0.0,
442
+ step=0.1,
443
+ label="Right Guidance",
444
+ <<<<<<< HEAD
445
+ visible=False,
446
+ =======
447
+ visible=False
448
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
449
+ )
450
+ with gr.Row():
451
+ result = gr.Image(
452
+ label="Generated Image",
453
+ show_label=True,
454
+ format="png",
455
+ interactive=False,
456
+ )
457
+ with gr.Column(scale=1, min_width=200):
458
+ gr.Markdown(
459
+ """
460
+ ### Related Apps
461
+ Check out these other great demos:
462
+
463
+ - **[Official Z-Image Demo](https://huggingface.co/spaces/Tongyi-MAI/Z-Image-Turbo)**
464
+ *The official demo for single image generation.*
465
+
466
+ - **[Panorama FLUX](https://huggingface.co/spaces/elismasilva/flux-1-panorama)**
467
+ *The Panorama app using the FLUX model.*
468
+ """
469
+ )
470
+ with gr.Sidebar():
471
+ gr.Markdown("### Generation Parameters")
472
+ prompt_language = gr.Radio(
473
+ choices=["English", "Korean", "Chinese"],
474
+ value="English",
475
+ label="Prompt Language",
476
+ )
477
+
478
+ resolution_preset = gr.Dropdown(
479
+ choices=PANORAMIC_RESOLUTIONS,
480
+ value=PANORAMIC_RESOLUTIONS[2],
481
+ label="Panoramic Resolution Preset",
482
+ )
483
+
484
+ with gr.Row():
485
+ height = gr.Slider(
486
+ label="Target Height", value=1024, step=16, minimum=512, maximum=2048
487
+ )
488
+ width = gr.Slider(
489
+ label="Target Width", value=3072, step=16, minimum=512, maximum=4096
490
+ )
491
+ with gr.Row():
492
+ overlap = gr.Slider(
493
+ minimum=0, maximum=512, value=256, step=16, label="Tile Overlap"
494
+ )
495
+ tile_weighting_method = gr.Dropdown(
496
+ label="Blending Method", choices=["Cosine", "Gaussian"], value="Cosine"
497
+ )
498
+ with gr.Row():
499
+ calc_tile = gr.Button("Calculate Final Dimensions", variant="primary")
500
+ with gr.Row():
501
+ new_target_height = gr.Textbox(
502
+ label="Actual Height", value=1024, interactive=False
503
+ )
504
+ new_target_width = gr.Textbox(
505
+ label="Actual Width", value=3072, interactive=False
506
+ )
507
+ with gr.Row():
508
+ steps = gr.Slider(
509
+ minimum=1, maximum=50, value=9, step=1, label="Inference Steps"
510
+ )
511
+ shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
512
+ with gr.Row():
513
+ generation_seed = gr.Slider(
514
+ label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
515
+ )
516
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
517
+ with gr.Row():
518
+ hdr = gr.Slider(
519
+ minimum=0.0, maximum=1.0, value=0.1, step=0.00, label="HDR Effect"
520
+ )
521
+
522
+ with gr.Row():
523
+ gr.Examples(
524
+ examples=[
525
+ [
526
+ <<<<<<< HEAD
527
+ "On the left side of a wide, wet stone courtyard at night, a traditional wooden temple building has a soft, warm glow from its illuminated windows, the environment is a deep, dark night sky.",
528
+ "Young Chinese woman in red Hanfu, standing gracefully in the center of the stone-paved temple courtyard, intricate embroidery. Impeccable makeup, red floral forehead pattern. Elaborate high bun, golden phoenix headdress, red flowers, beads. Holds round folding fan with lady, trees, bird. Neon lightning-bolt lamp (⚡️), bright yellow glow, above extended left palm. Soft-lit outdoor night background, silhouetted tiered pagoda (西安大雁塔), blurred colorful distant lights.",
529
+ "On the right side of the frame, a wooden temple corridor with a row of glowing paper lanterns recedes into the background. The lantern light reflects on the wet stone path below, and the distant pagoda is silhouetted against the same deep, dark night sky.",
530
+ =======
531
+ "Iron Man, repulsor rays blasting enemies in destroyed cityscape, cinematic lighting, photorealistic. Focus: Iron Man.",
532
+ "Captain America charging forward, vibranium shield deflecting energy blasts in destroyed cityscape, cinematic composition. Focus: Captain America.",
533
+ "Thor wielding Stormbreaker in destroyed cityscape, lightning crackling, powerful strike downwards, cinematic photography. Focus: Thor.",
534
+ 0.0,
535
+ 0.0,
536
+ 0.0,
537
+ 200,
538
+ 8,
539
+ 619517442,
540
+ "Cosine",
541
+ 1024,
542
+ 3440,
543
+ 0.0,
544
+ ],
545
+ [
546
+ "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, sharp focus, artstation, stunning masterpiece",
547
+ "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, sharp focus, artstation, stunning masterpiece",
548
+ "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, sharp focus, artstation, stunning masterpiece",
549
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
550
+ 0.0,
551
+ 0.0,
552
+ 0.0,
553
+ 256,
554
+ <<<<<<< HEAD
555
+ 8,
556
+ 3.0,
557
+ 109320357,
558
+ "Cosine",
559
+ 1024,
560
+ 3072,
561
+ =======
562
+ 4,
563
+ 358867853,
564
+ "Gaussian",
565
+ 1024,
566
+ 3808,
567
+ 0.0,
568
+ ],
569
+ [
570
+ "A vibrant mountain slope in full spring bloom, covered in colorful wildflowers and lush green grass, a small stream meandering down, cinematic photo, bright morning light.",
571
+ "The majestic, rocky peak of the same mountain under a clear summer sky, patches of green tundra, eagles soaring high above, strong midday sun. cinematic photo.",
572
+ "The other side of the mountain descending into a valley ablaze with autumn colors, forests of red, orange, and yellow trees, a gentle haze in the air. cinematic photo, golden hour light.",
573
+ 0.0,
574
+ 0.0,
575
+ 0.0,
576
+ 280,
577
+ 4,
578
+ 20240521,
579
+ "Cosine",
580
+ 1024,
581
+ 2896,
582
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
583
+ 0.0,
584
+ False,
585
+ ],
586
+ [
587
+ <<<<<<< HEAD
588
+ "Street photography of a bustling, modern Chinese city square in the morning. On the left, people in business attire walk past gleaming glass and steel office buildings under a hazy, bright sun.",
589
+ "The center of the vast, modern plaza, where a large, elegant water fountain sprays water high into the air. In the background, through the mist of the fountain, the same modern glass and steel office buildings continue across the scene. The sun reflects off the wet plaza floor.",
590
+ "The right side of the plaza, where groups of fashionable teenagers are casually standing near the concrete pillars of a modern building, looking at their smartphones under the same hazy, bright sun.",
591
+ =======
592
+ "Enchanted forest with glowing bioluminescent plants and mystical fog, fantasy art.",
593
+ "Ancient elven castle with towering white spires bathed in moonlight, fantasy art.",
594
+ "Majestic griffin soaring above a starry night sky, fantasy art.",
595
+ 0.0,
596
+ 0.0,
597
+ 0.0,
598
+ 224,
599
+ 6,
600
+ 1029384756,
601
+ "Gaussian",
602
+ 1024,
603
+ 3392,
604
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
605
+ 0.0,
606
+ 0.0,
607
+ 0.0,
608
+ 256,
609
+ 8,
610
+ 6.0,
611
+ 2024,
612
+ "Cosine",
613
+ 1024,
614
+ 3072,
615
+ 0.0,
616
+ False
617
+ ],
618
+ [
619
+ "The edge of the green carpeted arena floor, with the blurred figures of spectators in the stands rising up in the background. A judge's table is partially visible on the far left.",
620
+ "In the center of the green carpeted arena floor, a proud man in a fine suit stands with his perfectly groomed white poodle, both looking forward. The poodle wears a matching tiny tuxedo.",
621
+ "Further down the green carpeted arena on the right, a line of other dog handlers and their breeds are waiting their turn in the distance, their forms slightly blurred by the depth of field.",
622
+ 0.0,
623
+ 0.0,
624
+ 0.0,
625
+ 200,
626
+ <<<<<<< HEAD
627
+ 8,
628
+ 3.0,
629
+ 1146985307,
630
+ "Gaussian",
631
+ =======
632
+ 4,
633
+ 54321,
634
+ "Gaussian",
635
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
636
+ 1024,
637
+ 2672,
638
+ 0.0,
639
+ False
640
+ ],
641
+ [
642
+ <<<<<<< HEAD
643
+ "Iron Man, repulsor rays blasting enemies in destroyed cityscape, cinematic lighting, photorealistic. Focus: Iron Man.",
644
+ "Captain America charging forward, vibranium shield deflecting energy blasts in destroyed cityscape, cinematic composition. Focus: Captain America.",
645
+ "Thor wielding Stormbreaker in destroyed cityscape, lightning crackling, powerful strike downwards, cinematic photography. Focus: Thor.",
646
+ 0,
647
+ 0,
648
+ 0,
649
+ 200,
650
+ 8,
651
+ 4.0,
652
+ 85512926,
653
+ "Cosine",
654
+ 1024,
655
+ 3440,
656
+ =======
657
+ "A futuristic neon-lit city street at night, flying cars zooming past, towering holographic billboards. cyberpunk aesthetic, blade runner style.",
658
+ "The entrance to a grimy, underground nightclub, a mysterious figure in a trench coat standing in the doorway, steam rising from a vent. cyberpunk aesthetic, blade runner style.",
659
+ "A dark alleyway off the main street, piles of discarded electronics, graffiti glowing on the walls, rain glistening on the pavement. cyberpunk aesthetic, blade runner style.",
660
+ 0.0,
661
+ 0.0,
662
+ 0.0,
663
+ 300,
664
+ 8,
665
+ 98765,
666
+ "Cosine",
667
+ 1024,
668
+ 3240,
669
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
670
+ 0.0,
671
+ False
672
+ ]
673
+ ],
674
+ inputs=[
675
+ left_prompt,
676
+ center_prompt,
677
+ right_prompt,
678
+ left_gs,
679
+ center_gs,
680
+ right_gs,
681
+ overlap,
682
+ steps,
683
+ shift,
684
+ generation_seed,
685
+ <<<<<<< HEAD
686
+ tile_weighting_method,
687
+ =======
688
+ tile_weighting_method,
689
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
690
+ height,
691
+ width,
692
+ hdr,
693
+ randomize_seed
694
+ ],
695
+ fn=run_for_examples,
696
+ outputs=result,
697
+ cache_examples=False,
698
+ api_name=False,
699
+ )
700
+
701
+ # Event Handling
702
+ predict_inputs = [
703
+ left_prompt,
704
+ center_prompt,
705
+ right_prompt,
706
+ left_gs,
707
+ center_gs,
708
+ right_gs,
709
+ overlap,
710
+ steps,
711
+ shift,
712
+ generation_seed,
713
+ tile_weighting_method,
714
+ <<<<<<< HEAD
715
+ prompt_language,
716
+ =======
717
+ prompt_language,
718
+ >>>>>>> 9805178aafc167973e2c82d7be94d5a21a004362
719
+ new_target_height,
720
+ new_target_width,
721
+ hdr,
722
+ ]
723
+
724
+ resolution_preset.change(
725
+ fn=update_dimensions_from_preset,
726
+ inputs=resolution_preset,
727
+ outputs=[width, height],
728
+ api_name=False,
729
+ )
730
+ calc_tile.click(
731
+ fn=calculate_tile_size,
732
+ inputs=[height, width, overlap],
733
+ outputs=[new_target_height, new_target_width],
734
+ show_api=False,
735
+ )
736
+ generate_button.click(
737
+ fn=randomize_seed_fn,
738
+ inputs=[generation_seed, randomize_seed],
739
+ outputs=generation_seed,
740
+ queue=False,
741
+ api_name=False,
742
+ ).then(
743
+ fn=calculate_tile_size,
744
+ inputs=[height, width, overlap],
745
+ outputs=[new_target_height, new_target_width],
746
+ show_api=False,
747
+ ).then(
748
+ fn=generate_z_image_panorama,
749
+ inputs=predict_inputs,
750
+ outputs=result,
751
+ show_progress="full",
752
+ api_name="generate_z_image_panorama",
753
+ )
754
+
755
+ app.queue().launch(mcp_server=True, share=True)
infer.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import time
4
+ import os
5
+
6
+ # 1. Import the final, self-contained tiling pipeline
7
+ from pipeline_z_image_mod import ZImageMoDTilingPipeline
8
+ from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, GGUFQuantizationConfig
9
+ from diffusers.models import ZImageTransformer2DModel
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer
11
+ from huggingface_hub import hf_hub_download
12
+
13
+ def main():
14
+ # 1. Load Components Manually, using GGUF for the Transformer
15
+ print("--- 1. Loading Model Components (with GGUF) ---")
16
+ BASE_MODEL_ID = "Tongyi-MAI/Z-Image-Turbo"
17
+ GGUF_REPO_ID = "jayn7/Z-Image-Turbo-GGUF"
18
+ GGUF_FILENAME = "z_image_turbo-Q4_K_M.gguf"
19
+ GGUF_LOCAL_DIR = "F:\\models\\Z-Image-Turbo"
20
+
21
+ print("Loading VAE...")
22
+ vae = AutoencoderKL.from_pretrained(BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.bfloat16)
23
+ print("Loading Text Encoder and Tokenizer...")
24
+ text_encoder = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16)
25
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, subfolder="tokenizer")
26
+ print(f"Loading Transformer from GGUF file: {GGUF_FILENAME}...")
27
+ transformer = ZImageTransformer2DModel.from_single_file(hf_hub_download(GGUF_REPO_ID, GGUF_FILENAME, local_dir=GGUF_LOCAL_DIR, local_dir_use_symlinks=False), quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16)
28
+
29
+ scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3.0)
30
+
31
+ # 2. Initialize our Tiling Pipeline with Pre-loaded Components
32
+ print("\n--- 2. Assembling the ZImageMoDTilingPipeline ---")
33
+ pipe = ZImageMoDTilingPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, transformer=transformer)
34
+
35
+ print("Enabling model CPU offload...")
36
+ pipe.enable_model_cpu_offload()
37
+
38
+ # 3. Set Up Tiling and Inference Parameters
39
+ print("\n--- 3. Setting Up Inference Parameters ---")
40
+
41
+ prompt_grid = [[
42
+ "On the left side of a wide, wet stone courtyard at night, a traditional wooden temple building has a soft, warm glow from its illuminated windows, the environment is a deep, dark night sky.",
43
+ "Young Chinese woman in red Hanfu, standing gracefully in the center of the stone-paved temple courtyard, intricate embroidery. Impeccable makeup, red floral forehead pattern. Elaborate high bun, golden phoenix headdress, red flowers, beads. Holds round folding fan with lady, trees, bird. Neon lightning-bolt lamp (⚡️), bright yellow glow, above extended left palm. Soft-lit outdoor night background, silhouetted tiered pagoda (西安大雁塔), blurred colorful distant lights.",
44
+ "On the right side of the frame, a wooden temple corridor with a row of glowing paper lanterns recedes into the background. The lantern light reflects on the wet stone path below, and the distant pagoda is silhouetted against the same deep, dark night sky.",
45
+ ]]
46
+
47
+ target_height, canvas_width = 1024, 3072
48
+ num_inference_steps = 8
49
+ seed = 109320357
50
+ generator = torch.Generator("cuda").manual_seed(seed)
51
+
52
+ # 4. Start Inference
53
+ print("\n--- 4. Starting Inference ---")
54
+
55
+ start_inference_time = time.time()
56
+
57
+ # A single, clean call to our self-contained pipeline.
58
+ # No guidance_scale or negative_prompt is needed for the Turbo model.
59
+ image = pipe(
60
+ prompt=prompt_grid,
61
+ height=target_height,
62
+ width=canvas_width,
63
+ num_inference_steps=num_inference_steps,
64
+ generator=generator,
65
+ ).images[0]
66
+
67
+ end_inference_time = time.time()
68
+ print(f"\nInference finished in {end_inference_time - start_inference_time:.2f} seconds.")
69
+
70
+ # 5. Save Output
71
+ if not os.path.exists("outputs"): os.makedirs("outputs")
72
+ output_filename = "outputs/z_image_panorama_final.png"
73
+ image.save(output_filename)
74
+ print(f"Image successfully saved as '{output_filename}'")
75
+
76
+ if __name__ == "__main__":
77
+ main()
pipeline_z_image_mod.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025, DEVAIEXP Team, Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import gc
16
+ import torch
17
+ import numpy as np
18
+ from enum import Enum
19
+ from typing import List, Optional, Union
20
+
21
+ from diffusers.utils import logging
22
+ from diffusers.pipelines.z_image.pipeline_z_image import ZImagePipeline, calculate_shift
23
+ from diffusers.pipelines.z_image.pipeline_output import ZImagePipelineOutput
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ # Tiling Engine Helper Functions
28
+ def _adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1280):
29
+ width, height = image_size; aspect_ratio = width / height
30
+ if aspect_ratio > 1:
31
+ tile_width = min(width, max_tile_size); tile_height = min(int(tile_width / aspect_ratio), max_tile_size)
32
+ else:
33
+ tile_height = min(height, max_tile_size); tile_width = min(int(tile_height * aspect_ratio), max_tile_size)
34
+ return max(tile_width, base_tile_size), max(tile_height, base_tile_size)
35
+
36
+ def _calculate_tile_positions(image_dim: int, tile_dim: int, overlap: int) -> List[int]:
37
+ if image_dim <= tile_dim: return [0]
38
+ positions = []; current_pos = 0; stride = tile_dim - overlap
39
+ while True:
40
+ positions.append(current_pos)
41
+ if current_pos + tile_dim >= image_dim: break
42
+ current_pos += stride
43
+ if current_pos > image_dim - tile_dim: break
44
+ if positions[-1] + tile_dim < image_dim: positions.append(image_dim - tile_dim)
45
+ return sorted(list(set(positions)))
46
+
47
+ def _tile2pixel_indices(tile_row_pos, tile_col_pos, tile_width, tile_height, image_width, image_height):
48
+ px_row_init = tile_row_pos; px_col_init = tile_col_pos
49
+ px_row_end = min(px_row_init + tile_height, image_height)
50
+ px_col_end = min(px_col_init + tile_width, image_width)
51
+ return px_row_init, px_row_end, px_col_init, px_col_end
52
+
53
+ def _tile2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end, vae_scale_factor):
54
+ return px_row_init // vae_scale_factor, px_row_end // vae_scale_factor, px_col_init // vae_scale_factor, px_col_end // vae_scale_factor
55
+
56
+ def release_memory(device):
57
+ gc.collect()
58
+ if torch.cuda.is_available():
59
+ torch.cuda.empty_cache()
60
+
61
+ class ZImageMoDTilingPipeline(ZImagePipeline):
62
+ class TileWeightingMethod(Enum):
63
+ COSINE = "Cosine"; GAUSSIAN = "Gaussian"
64
+
65
+ def _generate_gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype, sigma=0.4):
66
+ latent_width, latent_height = tile_width // self.vae_scale_factor, tile_height // self.vae_scale_factor
67
+ x, y = np.linspace(-1, 1, latent_width), np.linspace(-1, 1, latent_height)
68
+ xx, yy = np.meshgrid(x, y)
69
+ gaussian_weight_np = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
70
+ weights_torch_f32 = torch.tensor(gaussian_weight_np, device=device, dtype=torch.float32)
71
+ weights_torch_target_dtype = weights_torch_f32.to(dtype)
72
+ return torch.tile(weights_torch_target_dtype, (nbatches, self.transformer.in_channels, 1, 1))
73
+
74
+ def _generate_cosine_weights(self, tile_width, tile_height, nbatches, device, dtype):
75
+ latent_width, latent_height = tile_width // self.vae_scale_factor, tile_height // self.vae_scale_factor
76
+ x, y = np.arange(latent_width), np.arange(latent_height)
77
+ mid_x, mid_y = (latent_width - 1) / 2, (latent_height - 1) / 2
78
+ x_probs, y_probs = np.cos(np.pi * (x - mid_x) / latent_width), np.cos(np.pi * (y - mid_y) / latent_height)
79
+ weights_np = np.outer(y_probs, x_probs)
80
+ weights_torch = torch.tensor(weights_np, device=device, dtype=dtype)
81
+ return torch.tile(weights_torch, (nbatches, self.transformer.in_channels, 1, 1))
82
+
83
+ def prepare_tiles_weights(self, y_steps, x_steps, tile_height, tile_width, final_height, final_width, tile_weighting_method, tile_gaussian_sigma, batch_size, device, dtype):
84
+ tile_weights = np.empty((len(y_steps), len(x_steps)), dtype=object)
85
+ for row, y_start in enumerate(y_steps):
86
+ for col, x_start in enumerate(x_steps):
87
+ _, px_row_end, _, px_col_end = _tile2pixel_indices(y_start, x_start, tile_width, tile_height, final_width, final_height)
88
+ current_tile_h, current_tile_w = px_row_end - y_start, px_col_end - x_start
89
+ if tile_weighting_method == self.TileWeightingMethod.COSINE.value:
90
+ tile_weights[row, col] = self._generate_cosine_weights(current_tile_w, current_tile_h, batch_size, device, dtype)
91
+ else:
92
+ tile_weights[row, col] = self._generate_gaussian_weights(current_tile_w, current_tile_h, batch_size, device, dtype, sigma=tile_gaussian_sigma)
93
+ return tile_weights
94
+
95
+ @torch.no_grad()
96
+ def __call__(
97
+ self,
98
+ prompt: Union[str, List[List[str]]],
99
+ height: int = 1024,
100
+ width: int = 1024,
101
+ num_inference_steps: int = 9,
102
+ guidance_scale: float = 0.0,
103
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
104
+ max_tile_size: int = 1024,
105
+ tile_overlap: int = 256,
106
+ tile_weighting_method: str = "Cosine",
107
+ tile_gaussian_sigma: float = 0.4,
108
+ guidance_scale_tiles: Optional[List[List[float]]] = None,
109
+ max_sequence_length: int = 512,
110
+ output_type: Optional[str] = "pil",
111
+ return_dict: bool = True,
112
+ **kwargs,
113
+ ):
114
+ # Handle negative_prompt from kwargs for backward compatibility if needed, but default to empty
115
+ negative_prompt = kwargs.get("negative_prompt", "")
116
+
117
+ device = self._execution_device; batch_size = 1
118
+ is_prompt_grid = isinstance(prompt, list) and all(isinstance(row, list) for row in prompt)
119
+ PIXEL_MULTIPLE = self.vae_scale_factor * 2 # 16
120
+
121
+ # Grid and Dimension Calculation
122
+ if is_prompt_grid:
123
+ grid_rows, grid_cols = len(prompt), len(prompt[0])
124
+ tile_width = (width + (grid_cols - 1) * tile_overlap) // grid_cols
125
+ tile_height = (height + (grid_rows - 1) * tile_overlap) // grid_rows
126
+ tile_width -= tile_width % PIXEL_MULTIPLE; tile_height -= tile_height % PIXEL_MULTIPLE
127
+ final_width = tile_width * grid_cols - (grid_cols - 1) * tile_overlap
128
+ final_height = tile_height * grid_rows - (grid_rows - 1) * tile_overlap
129
+ x_steps = [i * (tile_width - tile_overlap) for i in range(grid_cols)]
130
+ y_steps = [i * (tile_height - tile_overlap) for i in range(grid_rows)]
131
+ else:
132
+ final_width, final_height = width, height
133
+ tile_width, tile_height = _adaptive_tile_size((final_width, final_height), max_tile_size=max_tile_size)
134
+ tile_width -= tile_width % PIXEL_MULTIPLE; tile_height -= tile_height % PIXEL_MULTIPLE
135
+ y_steps = _calculate_tile_positions(final_height, tile_height, tile_overlap)
136
+ x_steps = _calculate_tile_positions(final_width, tile_width, tile_overlap)
137
+ grid_rows, grid_cols = len(y_steps), len(x_steps)
138
+
139
+ # Prompt Encoding
140
+ text_embeddings = []
141
+ for r in range(grid_rows):
142
+ row_embeddings = []
143
+ for c in range(grid_cols):
144
+ p = prompt[r][c] if is_prompt_grid else prompt
145
+ prompt_embeds, _ = self.encode_prompt(
146
+ prompt=p, do_classifier_free_guidance=False, device=device, max_sequence_length=max_sequence_length
147
+ )
148
+ row_embeddings.append({"prompt": prompt_embeds})
149
+ text_embeddings.append(row_embeddings)
150
+
151
+ # Latent and Scheduler Setup
152
+ num_latent_channels = self.transformer.in_channels
153
+ latents = self.prepare_latents(
154
+ batch_size, num_latent_channels, final_height, final_width, torch.float32, device, generator
155
+ )
156
+
157
+ image_seq_len = (tile_height // 2) * (tile_width // 2)
158
+ mu = calculate_shift(image_seq_len)
159
+ self.scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
160
+ timesteps = self.scheduler.timesteps
161
+
162
+ # Prepare Weights and Offload
163
+ tile_weights = self.prepare_tiles_weights(y_steps, x_steps, tile_height, tile_width, final_height, final_width, tile_weighting_method, tile_gaussian_sigma, batch_size, device, latents.dtype)
164
+ self.text_encoder.to("cpu");
165
+ release_memory(device)
166
+
167
+ # Denoising Loop
168
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
169
+ for t in timesteps:
170
+ denoised_step_canvas = torch.zeros_like(latents)
171
+ contributors = torch.zeros_like(latents)
172
+
173
+ for r, y_start in enumerate(y_steps):
174
+ for c, x_start in enumerate(x_steps):
175
+ px_r_init, px_r_end, px_c_init, px_c_end = _tile2pixel_indices(y_start, x_start, tile_width, tile_height, final_width, final_height)
176
+ r_init, r_end, c_init, c_end = _tile2latent_indices(px_r_init, px_r_end, px_c_init, px_c_end, self.vae_scale_factor)
177
+
178
+ tile_latents = latents[:, :, r_init:r_end, c_init:c_end]
179
+ latents_typed = tile_latents.to(self.transformer.dtype)
180
+ embeds = text_embeddings[r][c]
181
+ timestep_model_input = t.expand(latents_typed.shape[0])
182
+ timestep_norm = (1000 - timestep_model_input) / 1000
183
+
184
+ latent_model_input_list = list(latents_typed.unsqueeze(2).unbind(dim=0))
185
+
186
+ model_out_list = self.transformer(
187
+ latent_model_input_list,
188
+ timestep_norm,
189
+ embeds["prompt"],
190
+ )[0]
191
+
192
+
193
+ noise_pred_tile = model_out_list[0].float()
194
+ noise_pred_tile = -noise_pred_tile.squeeze(1)
195
+
196
+ denoised_step_canvas[:, :, r_init:r_end, c_init:c_end] += noise_pred_tile * tile_weights[r, c]
197
+ contributors[:, :, r_init:r_end, c_init:c_end] += tile_weights[r, c]
198
+
199
+ noise_pred_canvas = denoised_step_canvas / contributors
200
+ latents = self.scheduler.step(noise_pred_canvas.to(torch.float32), t, latents).prev_sample
201
+ progress_bar.update()
202
+
203
+ # Post-processing
204
+ if output_type == "latent":
205
+ image = latents
206
+ else:
207
+ self.vae.to(device)
208
+ latents = latents.to(self.vae.dtype)
209
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
210
+ image = self.vae.decode(latents, return_dict=False)[0]
211
+ image = self.image_processor.postprocess(image, output_type=output_type)
212
+
213
+ self.maybe_free_model_hooks();
214
+ return ZImagePipelineOutput(images=image) if return_dict else image
prompt_check.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import torch
4
+
5
+
6
+ def clean_model_output(text):
7
+ text = re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL)
8
+ text = re.sub(r"\n*(assistant|user)\n*", "", text)
9
+ text = re.sub(r"\n+", "\n", text).strip()
10
+ return text
11
+
12
+
13
+ def is_unsafe_prompt(model, device, tokenizer, system_prompt=None, user_prompt=None, max_new_token=10):
14
+ messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
15
+ with torch.inference_mode():
16
+ text = tokenizer.apply_chat_template(
17
+ messages,
18
+ tokenize=False,
19
+ add_generation_prompt=True,
20
+ enable_thinking=False,
21
+ )
22
+ model = model.to(device)
23
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
24
+
25
+ generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_token)
26
+ output_ids = generated_ids[0][-max_new_token:].tolist()
27
+
28
+ content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
29
+
30
+ return "yes" in content.lower()
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio[mcp]==5.50.0
2
+ spaces
3
+ git+https://github.com/huggingface/diffusers.git@refs/pull/12756/head
4
+ torch==2.8.0
5
+ torchvision==0.23.0
6
+ torchaudio==2.8.0
7
+ transformers==4.56.0
8
+ bitsandbytes==0.48.1
9
+ xformers==0.0.32.post2
10
+ hf_xet
11
+ protobuf
12
+ sacremoses
13
+ sentencepiece
14
+ ligo-segments
15
+ scipy
16
+ triton-windows<3.5; sys_platform == 'win32'
17
+ triton==3.4.0; sys_platform != 'win32'
requirements_local.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu126
2
+
3
+ gradio[mcp]==5.50.0
4
+ spaces
5
+ gradio==5.50.0
6
+ git+https://github.com/huggingface/diffusers.git@refs/pull/12756/head
7
+ torch==2.8.0+cu126
8
+ torchvision==0.23.0+cu126
9
+ torchaudio==2.8.0+cu126
10
+ transformers==4.56.0
11
+ bitsandbytes==0.48.1
12
+ xformers==0.0.32.post2
13
+ hf_xet
14
+ gguf
15
+ protobuf
16
+ sacremoses
17
+ sentencepiece
18
+ ligo-segments
19
+ scipy
20
+ triton-windows<3.5; sys_platform == 'win32'
21
+ triton==3.4.0; sys_platform != 'win32'
style.css ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* ==========================================================================
2
+ 1. GLOBAL & LAYOUT STYLES
3
+ ========================================================================== */
4
+
5
+ body {
6
+ font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
7
+ margin: 0;
8
+ padding: 0;
9
+ }
10
+
11
+ /* Main application container styling */
12
+ .gradio-container {
13
+ border-radius: 15px;
14
+ padding: 10px 20px;
15
+ box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
16
+ margin: 10px;
17
+ }
18
+ .column-container {
19
+ border-radius: 15px;
20
+ padding: 15px;
21
+ box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
22
+ margin: auto;
23
+ }
24
+
25
+ .action-console-col {
26
+ padding: 10px !important;
27
+ border-color: var(--border-color-primary) !important;
28
+ border-width: 1px !important;
29
+ border-radius: 8px;
30
+ margin-top: 10px;
31
+ }
32
+ .chatbot-container .message-row{
33
+ max-width: calc(100% - var(--spacing-sm) * 6) !important;
34
+ }
35
+ .chatbot-container pre code {
36
+ text-wrap: auto !important;
37
+ }
38
+ /* 2. Media Query for larger screens (desktops) */
39
+ @media (min-width: 1281px) {
40
+ .gradio-container {
41
+ padding: 10px 370px;
42
+ max-width: 2400px;
43
+ }
44
+ }
45
+
46
+ /* Text shadow for main headings for better readability */
47
+ .gradio-container h1 {
48
+ text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
49
+ }
50
+
51
+ /* Utility class to make elements fill their container's width */
52
+ /* .fillable {
53
+ width: 100% !important;
54
+ max-width: unset !important;
55
+ } */
56
+ #trace-log {
57
+ height: 200px !important;
58
+ overflow-y: auto !important;
59
+ background-color: var(--background-fill-primary);
60
+ border: 1px solid var(--border-color-primary);
61
+ border-radius: 8px;
62
+ padding: 10px;
63
+ }
64
+ .fillable .sidebar-parent {
65
+ padding-left: 10px !important;
66
+ padding-right: 10px !important;
67
+ }
68
+
69
+
70
+ /* ==========================================================================
71
+ 2. CUSTOM SCROLLBAR STYLES (GLOBAL & SIDEBAR)
72
+ ========================================================================== */
73
+
74
+ /* --- For WebKit browsers (Chrome, Safari, Edge, etc.) --- */
75
+ .sidebar-content::-webkit-scrollbar,
76
+ body::-webkit-scrollbar {
77
+ width: 8px;
78
+ height: 8px;
79
+ background-color: transparent;
80
+ }
81
+
82
+ .sidebar-content::-webkit-scrollbar-track,
83
+ body::-webkit-scrollbar-track {
84
+ background: transparent;
85
+ border-radius: 10px;
86
+ }
87
+
88
+ .sidebar-content::-webkit-scrollbar-thumb,
89
+ body::-webkit-scrollbar-thumb {
90
+ background-color: rgba(136, 136, 136, 0.4);
91
+ border-radius: 10px;
92
+ border: 2px solid transparent;
93
+ background-clip: content-box;
94
+ }
95
+
96
+ .sidebar-content::-webkit-scrollbar-thumb:hover,
97
+ body::-webkit-scrollbar-thumb:hover {
98
+ background-color: rgba(136, 136, 136, 0.7);
99
+ }
100
+
101
+ /* --- For Firefox --- */
102
+ .sidebar-content,
103
+ html {
104
+ scrollbar-width: thin;
105
+ scrollbar-color: rgba(136, 136, 136, 0.7) transparent;
106
+ }
107
+
108
+
109
+ /* ==========================================================================
110
+ 3. SIDEBAR STYLES
111
+ ========================================================================== */
112
+
113
+ .sidebar {
114
+ border-radius: 10px;
115
+ padding: 10px;
116
+ box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
117
+ }
118
+
119
+ /* Overrides for the content padding inside the sidebar */
120
+ .sidebar .sidebar-content {
121
+ padding-left: 10px !important;
122
+ padding-right: 10px !important;
123
+ }
124
+
125
+ /* Centers text within Markdown blocks inside the sidebar */
126
+ /* .sidebar .sidebar-content .column .block div .prose {
127
+ text-align: center;
128
+ } */
129
+
130
+ /* Stylish override for the sidebar toggle button */
131
+ .sidebar .toggle-button {
132
+ background: linear-gradient(135deg, var(--primary-500), var(--primary-600)) !important;
133
+ border: none;
134
+ padding: 12px 18px;
135
+ text-transform: uppercase;
136
+ font-weight: bold;
137
+ letter-spacing: 1px;
138
+ /* border-radius: 5px; */
139
+ position: absolute;
140
+ top: 50%;
141
+ right: -28px !important;
142
+ left: auto !important;
143
+ transform: unset !important;
144
+ border-radius: 0 var(--radius-lg) var(--radius-lg) 0 !important
145
+ }
146
+
147
+ .sidebar.right .toggle-button {
148
+ left: -28px !important;
149
+ right: auto !important;
150
+ transform: rotate(180deg) !important;
151
+ }
152
+
153
+ .sidebar.open .chevron-left {
154
+ transform: rotate(-135deg);
155
+ }
156
+
157
+ .bottom-bar .toggle-bottom-button {
158
+ background: linear-gradient(135deg, var(--primary-500), var(--primary-600)) !important;
159
+ }
160
+
161
+ .toggle-button:hover {
162
+ transform: scale(1.05);
163
+ }
164
+ .bottom-bar .toggle-bottom-button .chevron {
165
+ width: 100%;
166
+ height: 100%;
167
+ position: relative;
168
+ display: flex;
169
+ align-items: center;
170
+ justify-content: center;
171
+ }
172
+
173
+ .bottom-bar .toggle-bottom-button .chevron-arrow {
174
+ position: relative !important;
175
+ top: auto !important;
176
+ left: auto !important;
177
+ width: 10px !important;
178
+ height: 10px !important;
179
+ border-bottom: 2px solid var(--body-text-color) !important;
180
+ border-right: 2px solid var(--body-text-color) !important;
181
+ transform: rotate(-135deg) translateY(2px);
182
+ margin-bottom: -4px;
183
+ }
184
+ .bottom-bar.open .chevron-arrow {
185
+ transform: rotate(45deg) translateY(-2px) !important;
186
+ }
187
+
188
+ /* ==========================================================================
189
+ 5. COMPONENT-SPECIFIC STYLES & OVERRIDES
190
+ ========================================================================== */
191
+
192
+ /* Custom styling for the cancel button */
193
+ #cancel-button { /* Corrected the typo from 'cancell' to 'cancel' */
194
+ background: linear-gradient(120deg, var(--neutral-500) 0%, var(--neutral-600) 60%, var(--neutral-700) 100%) !important;
195
+ }
196
+ .custom-dropdown .wrap-inner input {
197
+ padding-right: 22px;
198
+ }
199
+
200
+ #pagination-row {
201
+ display: flex !important;
202
+ justify-content: center !important;
203
+ align-items: center !important;
204
+ gap: 4px !important;
205
+ margin-top: 8px !important;
206
+ padding: 0 !important;
207
+ min-height: 0 !important;
208
+ background: transparent !important;
209
+ border: none !important;
210
+ }
211
+
212
+ .pagination-btn {
213
+ width: 28px !important;
214
+ height: 28px !important;
215
+ min-width: 28px !important;
216
+ padding: 0 !important;
217
+ display: flex !important;
218
+ align-items: center !important;
219
+ justify-content: center !important;
220
+ font-size: 12px !important;
221
+ line-height: 1 !important;
222
+ border-radius: 4px !important;
223
+ flex-grow: 0 !important;
224
+ box-shadow: none !important;
225
+ }
226
+
227
+ #page_label {
228
+ flex: 0 0 auto !important;
229
+ width: auto !important;
230
+ display: inline-block !important;
231
+ margin: 0 8px !important;
232
+ font-size: 11px !important;
233
+ font-family: monospace !important;
234
+ white-space: nowrap !important;
235
+ color: var(--body-text-color-subdued);
236
+ }
237
+
238
+ #page_label p {
239
+ margin: 0 !important;
240
+ padding: 0 !important;
241
+ display: inline !important;
242
+ }
243
+ #chat-examples {
244
+ max-height: 300px;
245
+ overflow: auto !important;
246
+ }