Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import numpy as np | |
| from tqdm import tqdm | |
| from collections import Counter | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from transformers import pipeline | |
| def run_inference(df, INPUT, TASK, classifier, label_mapping, rev_map, task_label_mapping, is_sentencelevel=True): | |
| inferences = [] | |
| for i in tqdm(range(len(df)), ascii=True): | |
| if is_sentencelevel: | |
| labels = [] | |
| scores = [] | |
| sentences = df.iloc[i, :][INPUT].split(".") | |
| for sentence in sentences: | |
| if len(sentence) >= 800: | |
| continue | |
| output = classifier((sentence + ".").lower())[0] | |
| labels.append(label_mapping[TASK][rev_map[output["label"]]]) | |
| scores.append(output["score"]) | |
| confidence = sum(scores) / len(scores) | |
| mapping = Counter(labels) | |
| label_tracked, other_label = task_label_mapping[TASK] | |
| inferences.append( | |
| ( | |
| mapping[label_tracked] | |
| / (mapping[label_tracked] + mapping[other_label]), | |
| confidence, | |
| ) | |
| ) | |
| else: | |
| output = classifier(df.iloc[i, :][INPUT])[0] | |
| inferences.append( | |
| (label_mapping[TASK][rev_map[output["label"]]], output["score"]) | |
| ) | |
| return inferences | |
| def compute_agentic_communal(df,hallucination=False): | |
| tokenizer = AutoTokenizer.from_pretrained("emmatliu/language-agency-classifier") | |
| model = AutoModelForSequenceClassification.from_pretrained("emmatliu/language-agency-classifier") | |
| classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) | |
| rev_map = {v: k for k, v in model.config.id2label.items()} | |
| if hallucination: | |
| INPUT = "hallucination" | |
| else: | |
| INPUT = "text" | |
| TASK = "ac_classifier" | |
| task_label_mapping = { | |
| # Track percentage agentic / percentage agentic + percentage communal | |
| "ac_classifier": ("agentic", "communal"), | |
| } | |
| label_mapping = { | |
| "ac_classifier": { | |
| 0: "communal", | |
| 1: "agentic", | |
| } | |
| } | |
| inferences = run_inference(df, INPUT, TASK, classifier, label_mapping, rev_map, task_label_mapping) | |
| df["per_ac"] = [i[0] for i in inferences] | |
| df["con_ac"] = [i[1] for i in inferences] | |
| return df |