Spaces:
Runtime error
Runtime error
first working app
Browse files- app.py +89 -38
- models.py +1 -1
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,51 +1,37 @@
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import streamlit as st
|
| 3 |
import plotly.express as px
|
| 4 |
from models import NLI_MODEL_OPTIONS, NSP_MODEL_OPTIONS, METHOD_OPTIONS
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
"
|
| 10 |
-
[
|
| 11 |
-
METHOD_OPTIONS["nli"],
|
| 12 |
-
METHOD_OPTIONS["nsp"],
|
| 13 |
-
],
|
| 14 |
-
)
|
| 15 |
|
| 16 |
-
if
|
| 17 |
-
|
| 18 |
-
"Select a natural language inference model.", NLI_MODEL_OPTIONS
|
| 19 |
-
)
|
| 20 |
-
if method_selection == METHOD_OPTIONS["nsp"]:
|
| 21 |
-
model = st.selectbox(
|
| 22 |
-
"Select a BERT model for next sentence prediction.", NSP_MODEL_OPTIONS
|
| 23 |
-
)
|
| 24 |
|
| 25 |
-
st.header("Configure prompts and labels")
|
| 26 |
-
col1, col2 = st.columns(2)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
st.
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
value="Bu metin {} kategorisine aittir",
|
| 43 |
)
|
| 44 |
-
st.header("")
|
| 45 |
-
probs = [0.86, 0.10, 0.01, 0.02, 0.01]
|
| 46 |
-
data = pd.DataFrame(
|
| 47 |
-
{"labels": labels.split(","), "probability": probs}
|
| 48 |
-
).sort_values(by="probability", ascending=False)
|
| 49 |
chart = px.bar(
|
| 50 |
data,
|
| 51 |
x="probability",
|
|
@@ -67,4 +53,69 @@ with col2:
|
|
| 67 |
"showlegend": False,
|
| 68 |
}
|
| 69 |
)
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
import pandas as pd
|
| 3 |
import streamlit as st
|
| 4 |
import plotly.express as px
|
| 5 |
from models import NLI_MODEL_OPTIONS, NSP_MODEL_OPTIONS, METHOD_OPTIONS
|
| 6 |
+
from zeroshot_turkish.classifiers import NSPZeroshotClassifier, NLIZeroshotClassifier
|
| 7 |
|
| 8 |
+
if "current_model" not in st.session_state:
|
| 9 |
+
st.session_state["current_model"] = None
|
| 10 |
|
| 11 |
+
if "current_model_option" not in st.session_state:
|
| 12 |
+
st.session_state["current_model_option"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
if "current_method_option" not in st.session_state:
|
| 15 |
+
st.session_state["current_method_option"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def load_model(model_option: str, method_option: str, random_state: int = 0):
|
| 19 |
+
with st.spinner("Loading selected model..."):
|
| 20 |
+
if method_option == "Natural Language Inference":
|
| 21 |
+
st.session_state.current_model = NLIZeroshotClassifier(
|
| 22 |
+
model_name=model_option, random_state=random_state
|
| 23 |
+
)
|
| 24 |
+
else:
|
| 25 |
+
st.session_state.current_model = NSPZeroshotClassifier(
|
| 26 |
+
model_name=model_option, random_state=random_state
|
| 27 |
+
)
|
| 28 |
+
st.success("Model loaded!")
|
| 29 |
|
| 30 |
+
|
| 31 |
+
def visualize_output(labels: list[str], probabilities: list[float]):
|
| 32 |
+
data = pd.DataFrame({"labels": labels, "probability": probabilities}).sort_values(
|
| 33 |
+
by="probability", ascending=False
|
|
|
|
| 34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
chart = px.bar(
|
| 36 |
data,
|
| 37 |
x="probability",
|
|
|
|
| 53 |
"showlegend": False,
|
| 54 |
}
|
| 55 |
)
|
| 56 |
+
return chart
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
st.title("Zero-shot Turkish Text Classification")
|
| 60 |
+
method_option = st.radio(
|
| 61 |
+
"Select a zero-shot classification method.",
|
| 62 |
+
[
|
| 63 |
+
METHOD_OPTIONS["nli"],
|
| 64 |
+
METHOD_OPTIONS["nsp"],
|
| 65 |
+
],
|
| 66 |
+
)
|
| 67 |
+
if method_option == METHOD_OPTIONS["nli"]:
|
| 68 |
+
model_option = st.selectbox(
|
| 69 |
+
"Select a natural language inference model.",
|
| 70 |
+
NLI_MODEL_OPTIONS,
|
| 71 |
+
)
|
| 72 |
+
if method_option == METHOD_OPTIONS["nsp"]:
|
| 73 |
+
model_option = st.selectbox(
|
| 74 |
+
"Select a BERT model for next sentence prediction.",
|
| 75 |
+
NSP_MODEL_OPTIONS,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
if model_option != st.session_state.current_model_option:
|
| 79 |
+
st.session_state.current_model_option = model_option
|
| 80 |
+
st.session_state.current_method_option = method_option
|
| 81 |
+
load_model(
|
| 82 |
+
st.session_state.current_model_option, st.session_state.current_method_option
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
st.header("Configure prompts and labels")
|
| 87 |
+
col1, col2 = st.columns(2)
|
| 88 |
+
col1.subheader("Candidate labels")
|
| 89 |
+
labels = col1.text_area(
|
| 90 |
+
label="These are the labels that the model will try to predict for the given text input. Your input labels should be comma separated and meaningful.",
|
| 91 |
+
value="spor,dünya,siyaset,ekonomi,sanat",
|
| 92 |
+
key="current_labels",
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
col1.header("Make predictions")
|
| 96 |
+
text = col1.text_area(
|
| 97 |
+
"Enter a sentence or a paragraph to classify.",
|
| 98 |
+
value="Ian Anderson, Jethro Tull konserinde yan flüt çalarak zeybek oynadı.",
|
| 99 |
+
key="current_text",
|
| 100 |
+
)
|
| 101 |
+
col2.subheader("Prompt template")
|
| 102 |
+
prompt_template = col2.text_area(
|
| 103 |
+
label="Prompt template is used to transform NLI and NSP tasks into a general-use zero-shot classifier. Models replace {} with the labels that you have given.",
|
| 104 |
+
value="Bu metin {} kategorisine aittir",
|
| 105 |
+
key="current_template",
|
| 106 |
+
)
|
| 107 |
+
col2.header("")
|
| 108 |
+
make_pred = col1.button("Predict")
|
| 109 |
+
if make_pred:
|
| 110 |
+
prediction = st.session_state.current_model.predict_on_texts(
|
| 111 |
+
[st.session_state.current_text],
|
| 112 |
+
candidate_labels=st.session_state.current_labels.split(","),
|
| 113 |
+
prompt_template=st.session_state.current_template,
|
| 114 |
+
)
|
| 115 |
+
if "scores" in prediction[0]:
|
| 116 |
+
chart = visualize_output(prediction[0]["labels"], prediction[0]["scores"])
|
| 117 |
+
elif "probabilities" in prediction[0]:
|
| 118 |
+
chart = visualize_output(
|
| 119 |
+
prediction[0]["labels"], prediction[0]["probabilities"]
|
| 120 |
+
)
|
| 121 |
+
col2.plotly_chart(chart)
|
models.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
METHOD_OPTIONS = {
|
| 2 |
"nli": "Natural Language Inference",
|
| 3 |
-
"nsp": "Next Sentence Prediction
|
| 4 |
}
|
| 5 |
|
| 6 |
NLI_MODEL_OPTIONS = [
|
|
|
|
| 1 |
METHOD_OPTIONS = {
|
| 2 |
"nli": "Natural Language Inference",
|
| 3 |
+
"nsp": "Next Sentence Prediction",
|
| 4 |
}
|
| 5 |
|
| 6 |
NLI_MODEL_OPTIONS = [
|
requirements.txt
CHANGED
|
@@ -24,7 +24,7 @@ catalogue==2.0.6
|
|
| 24 |
certifi==2021.10.8
|
| 25 |
cffi==1.15.0
|
| 26 |
charset-normalizer==2.0.7
|
| 27 |
-
click
|
| 28 |
codecarbon==1.2.0
|
| 29 |
commonmark==0.9.1
|
| 30 |
configparser==5.1.0
|
|
|
|
| 24 |
certifi==2021.10.8
|
| 25 |
cffi==1.15.0
|
| 26 |
charset-normalizer==2.0.7
|
| 27 |
+
click
|
| 28 |
codecarbon==1.2.0
|
| 29 |
commonmark==0.9.1
|
| 30 |
configparser==5.1.0
|