Spaces:
Runtime error
Runtime error
Update Space (evaluate main: 3cd38e2b)
Browse files- README.md +63 -5
- app.py +6 -0
- requirements.txt +3 -0
- wilcoxon.py +78 -0
README.md
CHANGED
|
@@ -1,12 +1,70 @@
|
|
| 1 |
---
|
| 2 |
title: Wilcoxon
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Wilcoxon
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.0.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- evaluate
|
| 12 |
+
- comparison
|
| 13 |
+
description: >-
|
| 14 |
+
Wilcoxon's test is a signed-rank test for comparing paired samples.
|
| 15 |
---
|
| 16 |
|
| 17 |
+
|
| 18 |
+
# Comparison Card for Wilcoxon
|
| 19 |
+
|
| 20 |
+
## Comparison description
|
| 21 |
+
|
| 22 |
+
Wilcoxon's test is a non-parametric signed-rank test that tests whether the distribution of the differences is symmetric about zero. It can be used to compare the predictions of two models.
|
| 23 |
+
|
| 24 |
+
## How to use
|
| 25 |
+
|
| 26 |
+
The Wilcoxon comparison is used to analyze paired ordinal data.
|
| 27 |
+
|
| 28 |
+
## Inputs
|
| 29 |
+
|
| 30 |
+
Its arguments are:
|
| 31 |
+
|
| 32 |
+
`predictions1`: a list of predictions from the first model.
|
| 33 |
+
|
| 34 |
+
`predictions2`: a list of predictions from the second model.
|
| 35 |
+
|
| 36 |
+
## Output values
|
| 37 |
+
|
| 38 |
+
The Wilcoxon comparison outputs two things:
|
| 39 |
+
|
| 40 |
+
`stat`: The Wilcoxon statistic.
|
| 41 |
+
|
| 42 |
+
`p`: The p value.
|
| 43 |
+
|
| 44 |
+
## Examples
|
| 45 |
+
|
| 46 |
+
Example comparison:
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
wilcoxon = evaluate.load("wilcoxon")
|
| 50 |
+
results = wilcoxon.compute(predictions1=[-7, 123.45, 43, 4.91, 5], predictions2=[1337.12, -9.74, 1, 2, 3.21])
|
| 51 |
+
print(results)
|
| 52 |
+
{'stat': 5.0, 'p': 0.625}
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
## Limitations and bias
|
| 56 |
+
|
| 57 |
+
The Wilcoxon test is a non-parametric test, so it has relatively few assumptions (basically only that the observations are independent). It should be used to analyze paired ordinal data only.
|
| 58 |
+
|
| 59 |
+
## Citations
|
| 60 |
+
|
| 61 |
+
```bibtex
|
| 62 |
+
@incollection{wilcoxon1992individual,
|
| 63 |
+
title={Individual comparisons by ranking methods},
|
| 64 |
+
author={Wilcoxon, Frank},
|
| 65 |
+
booktitle={Breakthroughs in statistics},
|
| 66 |
+
pages={196--202},
|
| 67 |
+
year={1992},
|
| 68 |
+
publisher={Springer}
|
| 69 |
+
}
|
| 70 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("wilcoxon", module_type="comparison")
|
| 6 |
+
launch_gradio_widget(module)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@a45df1eb9996eec64ec3282ebe554061cb366388
|
| 2 |
+
datasets~=2.0
|
| 3 |
+
scipy
|
wilcoxon.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""Wilcoxon test for model comparison."""
|
| 15 |
+
|
| 16 |
+
import datasets
|
| 17 |
+
from scipy.stats import wilcoxon
|
| 18 |
+
|
| 19 |
+
import evaluate
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
_DESCRIPTION = """
|
| 23 |
+
Wilcoxon's test is a non-parametric signed-rank test that tests whether the distribution of the differences is symmetric about zero. It can be used to compare the predictions of two models.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
_KWARGS_DESCRIPTION = """
|
| 28 |
+
Args:
|
| 29 |
+
predictions1 (`list` of `float`): Predictions for model 1.
|
| 30 |
+
predictions2 (`list` of `float`): Predictions for model 2.
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
stat (`float`): Wilcoxon test score.
|
| 34 |
+
p (`float`): The p value. Minimum possible value is 0. Maximum possible value is 1.0. A lower p value means a more significant difference.
|
| 35 |
+
|
| 36 |
+
Examples:
|
| 37 |
+
>>> wilcoxon = evaluate.load("wilcoxon")
|
| 38 |
+
>>> results = wilcoxon.compute(predictions1=[-7, 123.45, 43, 4.91, 5], predictions2=[1337.12, -9.74, 1, 2, 3.21])
|
| 39 |
+
>>> print(results)
|
| 40 |
+
{'stat': 5.0, 'p': 0.625}
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
_CITATION = """
|
| 45 |
+
@incollection{wilcoxon1992individual,
|
| 46 |
+
title={Individual comparisons by ranking methods},
|
| 47 |
+
author={Wilcoxon, Frank},
|
| 48 |
+
booktitle={Breakthroughs in statistics},
|
| 49 |
+
pages={196--202},
|
| 50 |
+
year={1992},
|
| 51 |
+
publisher={Springer}
|
| 52 |
+
}
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 57 |
+
class Wilcoxon(evaluate.Comparison):
|
| 58 |
+
def _info(self):
|
| 59 |
+
return evaluate.ComparisonInfo(
|
| 60 |
+
module_type="comparison",
|
| 61 |
+
description=_DESCRIPTION,
|
| 62 |
+
citation=_CITATION,
|
| 63 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 64 |
+
features=datasets.Features(
|
| 65 |
+
{
|
| 66 |
+
"predictions1": datasets.Value("float"),
|
| 67 |
+
"predictions2": datasets.Value("float"),
|
| 68 |
+
}
|
| 69 |
+
),
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def _compute(self, predictions1, predictions2):
|
| 73 |
+
# calculate difference
|
| 74 |
+
d = [p1 - p2 for (p1, p2) in zip(predictions1, predictions2)]
|
| 75 |
+
|
| 76 |
+
# compute statistic
|
| 77 |
+
res = wilcoxon(d)
|
| 78 |
+
return {"stat": res.statistic, "p": res.pvalue}
|