Spaces:
Sleeping
Sleeping
Shreyas
commited on
Upload 9 files
Browse files- Procfile +1 -0
- app.py +59 -0
- best.pt +3 -0
- face_det.py +39 -0
- face_model.py +103 -0
- model.py +298 -0
- requirements.txt +27 -0
- train_bert.py +73 -0
- voice_det.py +22 -0
Procfile
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
web: gunicorn app:app
|
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template
|
| 2 |
+
import subprocess
|
| 3 |
+
import os
|
| 4 |
+
import signal
|
| 5 |
+
import atexit
|
| 6 |
+
import platform
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
app = Flask(__name__, template_folder="templates")
|
| 10 |
+
streamlit_process = None
|
| 11 |
+
|
| 12 |
+
@app.route("/")
|
| 13 |
+
def home():
|
| 14 |
+
return render_template("index.html")
|
| 15 |
+
|
| 16 |
+
@app.route("/model")
|
| 17 |
+
def model():
|
| 18 |
+
# simple client redirect to Streamlit
|
| 19 |
+
return """
|
| 20 |
+
<script>window.location.href = 'http://localhost:8501';</script>
|
| 21 |
+
<p>Redirecting to AutVid AI...</p>
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
def start_streamlit():
|
| 25 |
+
"""Launch Streamlit as subprocess (works on Windows/macOS/Linux)."""
|
| 26 |
+
global streamlit_process
|
| 27 |
+
if streamlit_process is not None:
|
| 28 |
+
return
|
| 29 |
+
# ensure model.py exists
|
| 30 |
+
if not Path("model.py").exists():
|
| 31 |
+
raise FileNotFoundError("model.py not found next to app.py")
|
| 32 |
+
cmd = ["streamlit", "run", "model.py", "--server.port", "8501", "--server.headless", "true"]
|
| 33 |
+
if platform.system() == "Windows":
|
| 34 |
+
streamlit_process = subprocess.Popen(cmd, creationflags=subprocess.CREATE_NEW_PROCESS_GROUP)
|
| 35 |
+
else:
|
| 36 |
+
# setsid to create a new process group so we can kill gracefully
|
| 37 |
+
streamlit_process = subprocess.Popen(cmd, preexec_fn=os.setsid)
|
| 38 |
+
|
| 39 |
+
def stop_streamlit():
|
| 40 |
+
"""Kill Streamlit process when Flask exits."""
|
| 41 |
+
global streamlit_process
|
| 42 |
+
if streamlit_process:
|
| 43 |
+
try:
|
| 44 |
+
if platform.system() == "Windows":
|
| 45 |
+
streamlit_process.send_signal(signal.CTRL_BREAK_EVENT)
|
| 46 |
+
else:
|
| 47 |
+
os.killpg(os.getpgid(streamlit_process.pid), signal.SIGTERM)
|
| 48 |
+
except Exception:
|
| 49 |
+
try:
|
| 50 |
+
streamlit_process.terminate()
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
+
streamlit_process = None
|
| 54 |
+
|
| 55 |
+
atexit.register(stop_streamlit)
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
start_streamlit()
|
| 59 |
+
app.run(debug=True, port=5000)
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df93006e95a96763ab7e5833b31ff72f335ab01e40a6edd7a1d13f6adef18da0
|
| 3 |
+
size 5474899
|
face_det.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import supervision as sv
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
from typing import Union, Tuple
|
| 7 |
+
|
| 8 |
+
class FacialEmotionDetector:
|
| 9 |
+
"""
|
| 10 |
+
A class to detect facial emotions from an image or video frame using a YOLO model.
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, model_path='best.pt'):
|
| 13 |
+
if not os.path.exists(model_path):
|
| 14 |
+
raise FileNotFoundError(
|
| 15 |
+
f"Model file not found at '{model_path}'. "
|
| 16 |
+
f"Please ensure the YOLO model is in the correct directory."
|
| 17 |
+
)
|
| 18 |
+
self.model = YOLO(model_path)
|
| 19 |
+
self.box_annotator = sv.BoxAnnotator(thickness=2)
|
| 20 |
+
self.label_annotator = sv.LabelAnnotator(text_scale=0.5, text_thickness=1)
|
| 21 |
+
print("FacialEmotionDetector initialized successfully.")
|
| 22 |
+
|
| 23 |
+
def detect_emotion(self, frame: np.ndarray) -> Tuple[np.ndarray, Union[str, None]]:
|
| 24 |
+
result = self.model(frame, agnostic_nms=True)[0]
|
| 25 |
+
detections = sv.Detections.from_ultralytics(result)
|
| 26 |
+
|
| 27 |
+
dominant_emotion = None
|
| 28 |
+
if len(detections) > 0:
|
| 29 |
+
most_confident_idx = np.argmax(detections.confidence)
|
| 30 |
+
dominant_emotion = detections.data['class_name'][most_confident_idx]
|
| 31 |
+
|
| 32 |
+
labels = [
|
| 33 |
+
f"{self.model.model.names[class_id]} {confidence:0.2f}"
|
| 34 |
+
for _, _, confidence, class_id, _, _ in detections
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
annotated_frame = self.box_annotator.annotate(scene=frame.copy(), detections=detections)
|
| 38 |
+
annotated_frame = self.label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
| 39 |
+
return annotated_frame, dominant_emotion
|
face_model.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import supervision as sv
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
from typing import Union, Tuple
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class FacialEmotionDetector:
|
| 10 |
+
"""
|
| 11 |
+
Detect facial emotions from an image or video frame using a YOLO model.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, model_path: str = "best.pt"):
|
| 15 |
+
"""
|
| 16 |
+
Initialize the detector.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
model_path (str): Path to YOLO model weights (.pt).
|
| 20 |
+
"""
|
| 21 |
+
if not os.path.exists(model_path):
|
| 22 |
+
raise FileNotFoundError(
|
| 23 |
+
f"β Model file not found at '{model_path}'. "
|
| 24 |
+
f"Please ensure 'best.pt' is available in the project directory."
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Load YOLO model
|
| 28 |
+
self.model = YOLO(model_path)
|
| 29 |
+
|
| 30 |
+
# Supervision annotators for boxes + labels
|
| 31 |
+
self.box_annotator = sv.BoxAnnotator(thickness=2)
|
| 32 |
+
self.label_annotator = sv.LabelAnnotator(text_scale=0.5, text_thickness=1)
|
| 33 |
+
|
| 34 |
+
print("β
FacialEmotionDetector initialized successfully.")
|
| 35 |
+
|
| 36 |
+
def detect_emotion(self, frame: np.ndarray) -> Tuple[np.ndarray, Union[str, None]]:
|
| 37 |
+
"""
|
| 38 |
+
Detect emotions in a single frame.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
frame (np.ndarray): BGR image (OpenCV).
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
Tuple[np.ndarray, str|None]:
|
| 45 |
+
- Annotated frame (with boxes + labels).
|
| 46 |
+
- Most confident emotion label (or None if no detection).
|
| 47 |
+
"""
|
| 48 |
+
# YOLO inference
|
| 49 |
+
result = self.model(frame, agnostic_nms=True)[0]
|
| 50 |
+
|
| 51 |
+
# Convert YOLO results β Supervision detections
|
| 52 |
+
detections = sv.Detections.from_ultralytics(result)
|
| 53 |
+
|
| 54 |
+
# Find dominant (highest confidence) detection
|
| 55 |
+
dominant_emotion = None
|
| 56 |
+
if len(detections) > 0:
|
| 57 |
+
most_confident_idx = np.argmax(detections.confidence)
|
| 58 |
+
dominant_emotion = detections.data["class_name"][most_confident_idx]
|
| 59 |
+
|
| 60 |
+
# Build label strings
|
| 61 |
+
labels = [
|
| 62 |
+
f"{self.model.model.names[class_id]} {confidence:.2f}"
|
| 63 |
+
for _, _, confidence, class_id, _, _ in detections
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
# Annotate boxes
|
| 67 |
+
annotated = self.box_annotator.annotate(scene=frame.copy(), detections=detections)
|
| 68 |
+
# Annotate labels
|
| 69 |
+
annotated = self.label_annotator.annotate(scene=annotated, detections=detections, labels=labels)
|
| 70 |
+
|
| 71 |
+
return annotated, dominant_emotion
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
if __name__ == "__main__":
|
| 75 |
+
# Quick webcam test
|
| 76 |
+
try:
|
| 77 |
+
detector = FacialEmotionDetector(model_path="best.pt")
|
| 78 |
+
cap = cv2.VideoCapture(0)
|
| 79 |
+
|
| 80 |
+
if not cap.isOpened():
|
| 81 |
+
print("β Could not open webcam.")
|
| 82 |
+
else:
|
| 83 |
+
while True:
|
| 84 |
+
ret, frame = cap.read()
|
| 85 |
+
if not ret:
|
| 86 |
+
break
|
| 87 |
+
|
| 88 |
+
annotated_frame, emotion = detector.detect_emotion(frame)
|
| 89 |
+
cv2.imshow("Facial Emotion Detection", annotated_frame)
|
| 90 |
+
|
| 91 |
+
if emotion:
|
| 92 |
+
print(f"Detected Emotion: {emotion}")
|
| 93 |
+
|
| 94 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
| 95 |
+
break
|
| 96 |
+
|
| 97 |
+
cap.release()
|
| 98 |
+
cv2.destroyAllWindows()
|
| 99 |
+
|
| 100 |
+
except FileNotFoundError as e:
|
| 101 |
+
print(e)
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"β οΈ Unexpected error: {e}")
|
model.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model.py -- Realtime Video + Audio + Subtitles + Emotion Fusion
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
import threading
|
| 5 |
+
import wave
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import List, Tuple, Dict
|
| 8 |
+
|
| 9 |
+
import av
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 16 |
+
|
| 17 |
+
# Custom modules (ensure they exist)
|
| 18 |
+
from face_model import FacialEmotionDetector
|
| 19 |
+
from voice_det import Voice_Analysis
|
| 20 |
+
|
| 21 |
+
from streamlit_webrtc import webrtc_streamer, WebRtcMode, VideoTransformerBase, AudioProcessorBase
|
| 22 |
+
|
| 23 |
+
# ------------------------- Config -------------------------
|
| 24 |
+
FRAME_DETECT_EVERY_N = 4 # run YOLO every Nth frame (adjust for CPU)
|
| 25 |
+
AUDIO_SAMPLE_RATE = 48000
|
| 26 |
+
TEMP_AUDIO_PATH = "temp_recordings/live.wav"
|
| 27 |
+
BEST_PT = Path(__file__).parent / "best.pt"
|
| 28 |
+
|
| 29 |
+
st.set_page_config(page_title="AutVid AI β Realtime", layout="wide")
|
| 30 |
+
st.title("π§ AutVid AI β Real-time Video + Audio Emotion")
|
| 31 |
+
|
| 32 |
+
# ------------------------- Cached model loaders -------------------------
|
| 33 |
+
@st.cache_resource
|
| 34 |
+
def load_face_model_main():
|
| 35 |
+
if not BEST_PT.exists():
|
| 36 |
+
st.warning(f"YOLO weights not found at {BEST_PT.resolve()}. Video detection will show placeholder.")
|
| 37 |
+
return None
|
| 38 |
+
try:
|
| 39 |
+
det = FacialEmotionDetector(model_path=str(BEST_PT))
|
| 40 |
+
st.info("FacialEmotionDetector loaded.")
|
| 41 |
+
return det
|
| 42 |
+
except Exception as e:
|
| 43 |
+
st.error(f"Failed to load FacialEmotionDetector: {e}")
|
| 44 |
+
return None
|
| 45 |
+
|
| 46 |
+
@st.cache_resource
|
| 47 |
+
def load_voice_model():
|
| 48 |
+
try:
|
| 49 |
+
vm = Voice_Analysis()
|
| 50 |
+
st.info("Voice_Analysis loaded.")
|
| 51 |
+
return vm
|
| 52 |
+
except Exception as e:
|
| 53 |
+
st.error(f"Failed to load Voice_Analysis: {e}")
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
@st.cache_resource
|
| 57 |
+
def load_text_model():
|
| 58 |
+
try:
|
| 59 |
+
model_name = "bhadresh-savani/bert-base-go-emotion"
|
| 60 |
+
tok = BertTokenizer.from_pretrained(model_name)
|
| 61 |
+
mdl = BertForSequenceClassification.from_pretrained(model_name)
|
| 62 |
+
mdl.eval()
|
| 63 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
+
mdl.to(device)
|
| 65 |
+
id2label = mdl.config.id2label if hasattr(mdl.config, "id2label") else {i: str(i) for i in range(mdl.config.num_labels)}
|
| 66 |
+
label_list = [id2label[i] for i in range(len(id2label))]
|
| 67 |
+
st.info("Text model loaded.")
|
| 68 |
+
return tok, mdl, device, label_list
|
| 69 |
+
except Exception as e:
|
| 70 |
+
st.error(f"Failed to load text model: {e}")
|
| 71 |
+
return None, None, None, []
|
| 72 |
+
|
| 73 |
+
face_model_main = load_face_model_main()
|
| 74 |
+
voice_model = load_voice_model()
|
| 75 |
+
tokenizer, text_model, device, label_list = load_text_model()
|
| 76 |
+
|
| 77 |
+
# ------------------------- Text analysis -------------------------
|
| 78 |
+
def analyze_text_multilabel(text: str, threshold: float = 0.3) -> Tuple[List[str], Dict[str, float]]:
|
| 79 |
+
if not text.strip() or text_model is None:
|
| 80 |
+
return [], {}
|
| 81 |
+
enc = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
logits = text_model(**enc).logits
|
| 84 |
+
probs = torch.sigmoid(logits)[0].cpu().numpy()
|
| 85 |
+
scores = {label_list[i]: float(probs[i]) for i in range(len(label_list))}
|
| 86 |
+
chosen = [lbl for lbl, p in scores.items() if p >= threshold]
|
| 87 |
+
if not chosen:
|
| 88 |
+
chosen = [max(scores, key=scores.get)]
|
| 89 |
+
return chosen, scores
|
| 90 |
+
|
| 91 |
+
# ------------------------- WebRTC processors -------------------------
|
| 92 |
+
class AudioRecorder(AudioProcessorBase):
|
| 93 |
+
def __init__(self):
|
| 94 |
+
self.frames = []
|
| 95 |
+
self.lock = threading.Lock()
|
| 96 |
+
self.sample_rate = AUDIO_SAMPLE_RATE
|
| 97 |
+
|
| 98 |
+
def recv_audio(self, frame: av.AudioFrame) -> av.AudioFrame:
|
| 99 |
+
arr = frame.to_ndarray()
|
| 100 |
+
mono = np.mean(arr, axis=0).astype(np.int16) if arr.ndim == 2 else arr.astype(np.int16)
|
| 101 |
+
with self.lock:
|
| 102 |
+
self.frames.append(mono)
|
| 103 |
+
return frame
|
| 104 |
+
|
| 105 |
+
def save_wav(self, filename: str = TEMP_AUDIO_PATH) -> str:
|
| 106 |
+
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
| 107 |
+
with self.lock:
|
| 108 |
+
if not self.frames:
|
| 109 |
+
raise ValueError("No audio captured")
|
| 110 |
+
audio = np.concatenate(self.frames, axis=0).astype(np.int16)
|
| 111 |
+
with wave.open(filename, "wb") as wf:
|
| 112 |
+
wf.setnchannels(1)
|
| 113 |
+
wf.setsampwidth(2)
|
| 114 |
+
wf.setframerate(self.sample_rate)
|
| 115 |
+
wf.writeframes(audio.tobytes())
|
| 116 |
+
return filename
|
| 117 |
+
|
| 118 |
+
def clear(self):
|
| 119 |
+
with self.lock:
|
| 120 |
+
self.frames = []
|
| 121 |
+
|
| 122 |
+
class VideoProcessor(VideoTransformerBase):
|
| 123 |
+
def __init__(self):
|
| 124 |
+
try:
|
| 125 |
+
self.detector = FacialEmotionDetector(model_path=str(BEST_PT)) if BEST_PT.exists() else None
|
| 126 |
+
except:
|
| 127 |
+
self.detector = None
|
| 128 |
+
self.lock = threading.Lock()
|
| 129 |
+
self.counter = 0
|
| 130 |
+
self.last_annotated = None
|
| 131 |
+
self.last_emotion = None
|
| 132 |
+
|
| 133 |
+
def transform(self, frame: av.VideoFrame) -> av.VideoFrame:
|
| 134 |
+
img = frame.to_ndarray(format="bgr24")
|
| 135 |
+
annotated = img.copy()
|
| 136 |
+
emo = None
|
| 137 |
+
self.counter += 1
|
| 138 |
+
try:
|
| 139 |
+
if self.counter % FRAME_DETECT_EVERY_N == 0 and self.detector:
|
| 140 |
+
ann, emo = self.detector.detect_emotion(img)
|
| 141 |
+
if ann is not None:
|
| 142 |
+
annotated = ann
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print("Frame detection error:", e)
|
| 145 |
+
|
| 146 |
+
# Overlay transcript
|
| 147 |
+
transcript = st.session_state.get("transcript_overlay", "")
|
| 148 |
+
y0 = 30
|
| 149 |
+
for i, line in enumerate(transcript.split("\n")[-3:]):
|
| 150 |
+
y = y0 + i*25
|
| 151 |
+
cv2.putText(annotated, line, (10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
|
| 152 |
+
|
| 153 |
+
# Overlay last emotion
|
| 154 |
+
if emo:
|
| 155 |
+
cv2.putText(annotated, f"Emotion: {emo}", (10, y0 + 100), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,0), 2)
|
| 156 |
+
|
| 157 |
+
with self.lock:
|
| 158 |
+
self.last_annotated = annotated.copy()
|
| 159 |
+
self.last_emotion = emo
|
| 160 |
+
|
| 161 |
+
return av.VideoFrame.from_ndarray(annotated, format="bgr24")
|
| 162 |
+
|
| 163 |
+
def get_last(self):
|
| 164 |
+
with self.lock:
|
| 165 |
+
return self.last_annotated, self.last_emotion
|
| 166 |
+
|
| 167 |
+
# ------------------------- Session state -------------------------
|
| 168 |
+
for k, v in {
|
| 169 |
+
"video_emotion": None,
|
| 170 |
+
"voice_emotion": None,
|
| 171 |
+
"transcript": "",
|
| 172 |
+
"transcript_overlay": "",
|
| 173 |
+
"text_emotions": []
|
| 174 |
+
}.items():
|
| 175 |
+
if k not in st.session_state:
|
| 176 |
+
st.session_state[k] = v
|
| 177 |
+
|
| 178 |
+
# ------------------------- UI / Streamer -------------------------
|
| 179 |
+
st.sidebar.markdown("## Controls")
|
| 180 |
+
FRAME_DETECT_EVERY_N = st.sidebar.slider("Run YOLO every N frames", 1, 12, FRAME_DETECT_EVERY_N, 1)
|
| 181 |
+
auto_analyze = st.sidebar.checkbox("Auto analyze audio every interval", value=False)
|
| 182 |
+
auto_interval = st.sidebar.slider("Auto analyze interval (s)", 5, 30, 12, 1)
|
| 183 |
+
|
| 184 |
+
col_main, col_side = st.columns([2, 1])
|
| 185 |
+
|
| 186 |
+
with col_main:
|
| 187 |
+
st.subheader("Live camera (annotated)")
|
| 188 |
+
ctx = webrtc_streamer(
|
| 189 |
+
key="live-av",
|
| 190 |
+
mode=WebRtcMode.SENDRECV,
|
| 191 |
+
video_transformer_factory=VideoProcessor,
|
| 192 |
+
audio_processor_factory=AudioRecorder,
|
| 193 |
+
media_stream_constraints={"video": True, "audio": True},
|
| 194 |
+
async_processing=True,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
st.markdown("---")
|
| 198 |
+
st.write("Live preview from worker:")
|
| 199 |
+
if ctx and ctx.video_transformer:
|
| 200 |
+
annotated_frame, last_emo = ctx.video_transformer.get_last()
|
| 201 |
+
if annotated_frame is not None:
|
| 202 |
+
st.image(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), caption=f"Emotion: {last_emo}")
|
| 203 |
+
|
| 204 |
+
with col_side:
|
| 205 |
+
st.subheader("Live outputs")
|
| 206 |
+
st.metric("Video emotion", st.session_state.get("video_emotion") or "N/A")
|
| 207 |
+
st.metric("Voice emotion", st.session_state.get("voice_emotion") or "N/A")
|
| 208 |
+
st.text_area("Transcript", value=st.session_state.get("transcript", ""), height=160)
|
| 209 |
+
|
| 210 |
+
if st.button("Clear audio buffer") and ctx and ctx.audio_receiver:
|
| 211 |
+
try:
|
| 212 |
+
ctx.audio_receiver._processor.clear()
|
| 213 |
+
st.success("Cleared audio buffer.")
|
| 214 |
+
except Exception as e:
|
| 215 |
+
st.error(f"Clear failed: {e}")
|
| 216 |
+
|
| 217 |
+
if st.button("Save & Analyze now") and ctx and ctx.audio_receiver:
|
| 218 |
+
proc = ctx.audio_receiver._processor
|
| 219 |
+
try:
|
| 220 |
+
wav = proc.save_wav(TEMP_AUDIO_PATH)
|
| 221 |
+
proc.clear()
|
| 222 |
+
st.audio(wav)
|
| 223 |
+
if voice_model:
|
| 224 |
+
res = voice_model.detect(wav)
|
| 225 |
+
if res:
|
| 226 |
+
st.session_state.voice_emotion = max(res, key=lambda r: r["score"])["label"]
|
| 227 |
+
st.session_state.transcript = voice_model.subtitles(wav)
|
| 228 |
+
st.session_state.transcript_overlay = st.session_state.transcript
|
| 229 |
+
st.success("Saved and analyzed audio.")
|
| 230 |
+
except Exception as e:
|
| 231 |
+
st.error(f"Save/analyze failed: {e}")
|
| 232 |
+
|
| 233 |
+
# Update video emotion from worker
|
| 234 |
+
if ctx and ctx.video_transformer:
|
| 235 |
+
_, last_vid_emo = ctx.video_transformer.get_last()
|
| 236 |
+
if last_vid_emo:
|
| 237 |
+
st.session_state.video_emotion = last_vid_emo
|
| 238 |
+
|
| 239 |
+
# Auto audio analyze loop
|
| 240 |
+
def auto_audio_loop():
|
| 241 |
+
while True:
|
| 242 |
+
if auto_analyze and ctx and ctx.audio_receiver:
|
| 243 |
+
try:
|
| 244 |
+
proc = ctx.audio_receiver._processor
|
| 245 |
+
wav = proc.save_wav(TEMP_AUDIO_PATH.replace(".wav","_auto.wav"))
|
| 246 |
+
proc.clear()
|
| 247 |
+
if voice_model:
|
| 248 |
+
res = voice_model.detect(wav)
|
| 249 |
+
if res:
|
| 250 |
+
st.session_state.voice_emotion = max(res, key=lambda r: r["score"])["label"]
|
| 251 |
+
txt = voice_model.subtitles(wav)
|
| 252 |
+
st.session_state.transcript = txt
|
| 253 |
+
st.session_state.transcript_overlay = txt
|
| 254 |
+
except Exception:
|
| 255 |
+
pass
|
| 256 |
+
time.sleep(auto_interval)
|
| 257 |
+
|
| 258 |
+
threading.Thread(target=auto_audio_loop, daemon=True).start()
|
| 259 |
+
|
| 260 |
+
# ---- Text analysis UI ----
|
| 261 |
+
st.markdown("---")
|
| 262 |
+
st.subheader("Text Emotion (BERT multi-label)")
|
| 263 |
+
text_in = st.text_area("Enter text to analyze", value=st.session_state.get("transcript", ""), height=140)
|
| 264 |
+
thresh = st.slider("Confidence threshold", 0.1, 0.9, 0.3, 0.05)
|
| 265 |
+
if st.button("Analyze text"):
|
| 266 |
+
chosen, scores = analyze_text_multilabel(text_in, threshold=thresh)
|
| 267 |
+
st.session_state.text_emotions = chosen
|
| 268 |
+
if scores:
|
| 269 |
+
st.json({k: round(v,4) for k,v in sorted(scores.items(), key=lambda x: x[1], reverse=True)})
|
| 270 |
+
if chosen:
|
| 271 |
+
st.success(f"Predicted (β₯{thresh:.2f}): {', '.join(chosen)}")
|
| 272 |
+
|
| 273 |
+
# ---- Multimodal Fusion ----
|
| 274 |
+
st.markdown("---")
|
| 275 |
+
st.subheader("Multimodal Fusion")
|
| 276 |
+
st.write("Video 0.5, Voice 0.3, Text 0.2")
|
| 277 |
+
|
| 278 |
+
def fuse(video_emotion, voice_emotion, text_emotions):
|
| 279 |
+
w = {"video":0.5, "voice":0.3, "text":0.2}
|
| 280 |
+
s = {}
|
| 281 |
+
if video_emotion:
|
| 282 |
+
s[video_emotion] = s.get(video_emotion,0)+w["video"]
|
| 283 |
+
if voice_emotion:
|
| 284 |
+
s[voice_emotion] = s.get(voice_emotion,0)+w["voice"]
|
| 285 |
+
if text_emotions:
|
| 286 |
+
share = w["text"]/max(1,len(text_emotions))
|
| 287 |
+
for t in text_emotions:
|
| 288 |
+
s[t] = s.get(t,0)+share
|
| 289 |
+
return s
|
| 290 |
+
|
| 291 |
+
if st.button("Fuse now"):
|
| 292 |
+
breakdown = fuse(st.session_state.get("video_emotion"), st.session_state.get("voice_emotion"), st.session_state.get("text_emotions", []))
|
| 293 |
+
if breakdown:
|
| 294 |
+
dom = max(breakdown, key=breakdown.get)
|
| 295 |
+
st.success(f"Dominant emotion: {dom}")
|
| 296 |
+
st.json({k: round(v,3) for k,v in breakdown.items()})
|
| 297 |
+
else:
|
| 298 |
+
st.warning("No modalities available yet.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core
|
| 2 |
+
flask>=3.0.0
|
| 3 |
+
streamlit>=1.36.0
|
| 4 |
+
|
| 5 |
+
# ML / CV / Audio
|
| 6 |
+
torch>=2.1.0
|
| 7 |
+
torchaudio>=2.1.0
|
| 8 |
+
transformers>=4.42.0
|
| 9 |
+
datasets>=2.20.0
|
| 10 |
+
evaluate>=0.4.2
|
| 11 |
+
numpy>=1.25.0
|
| 12 |
+
opencv-python>=4.9.0.80
|
| 13 |
+
ultralytics>=8.2.0
|
| 14 |
+
supervision>=0.18.0
|
| 15 |
+
streamlit-webrtc
|
| 16 |
+
|
| 17 |
+
# Whisper + recording
|
| 18 |
+
openai-whisper>=20231117
|
| 19 |
+
sounddevice>=0.4.6
|
| 20 |
+
|
| 21 |
+
# Utilities
|
| 22 |
+
tqdm>=4.66.0
|
| 23 |
+
|
| 24 |
+
#miscel
|
| 25 |
+
hf_xet
|
| 26 |
+
scikit-learn
|
| 27 |
+
gunicorn
|
train_bert.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
| 3 |
+
import numpy as np
|
| 4 |
+
import evaluate
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
print("π₯ Loading GoEmotions dataset...")
|
| 8 |
+
dataset = load_dataset("go_emotions", "simplified")
|
| 9 |
+
|
| 10 |
+
model_name = "bert-base-uncased"
|
| 11 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 12 |
+
num_labels = dataset["train"].features["labels"].feature.num_classes
|
| 13 |
+
print(f"β
Classes: {num_labels}")
|
| 14 |
+
|
| 15 |
+
def tokenize_and_encode(batch):
|
| 16 |
+
enc = tokenizer(batch["text"], padding="max_length", truncation=True, max_length=128)
|
| 17 |
+
labels = []
|
| 18 |
+
for labs in batch["labels"]:
|
| 19 |
+
vec = [0] * num_labels
|
| 20 |
+
for l in labs:
|
| 21 |
+
vec[l] = 1
|
| 22 |
+
labels.append(vec)
|
| 23 |
+
enc["labels"] = labels
|
| 24 |
+
return enc
|
| 25 |
+
|
| 26 |
+
encoded = dataset.map(tokenize_and_encode, batched=True)
|
| 27 |
+
encoded.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
|
| 28 |
+
|
| 29 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 30 |
+
model_name, num_labels=num_labels, problem_type="multi_label_classification"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
f1 = evaluate.load("f1")
|
| 34 |
+
accuracy = evaluate.load("accuracy")
|
| 35 |
+
|
| 36 |
+
def compute_metrics(eval_pred):
|
| 37 |
+
logits, labels = eval_pred
|
| 38 |
+
preds = (logits > 0).astype(int) # threshold at 0 for BCEWithLogits
|
| 39 |
+
return {
|
| 40 |
+
"accuracy": accuracy.compute(predictions=preds, references=labels)["accuracy"],
|
| 41 |
+
"f1_micro": f1.compute(predictions=preds, references=labels, average="micro")["f1"],
|
| 42 |
+
"f1_macro": f1.compute(predictions=preds, references=labels, average="macro")["f1"],
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
args = TrainingArguments(
|
| 46 |
+
output_dir="bert_emotion",
|
| 47 |
+
eval_strategy="epoch",
|
| 48 |
+
save_strategy="epoch",
|
| 49 |
+
learning_rate=2e-5,
|
| 50 |
+
per_device_train_batch_size=16,
|
| 51 |
+
per_device_eval_batch_size=16,
|
| 52 |
+
num_train_epochs=3,
|
| 53 |
+
weight_decay=0.01,
|
| 54 |
+
logging_dir="./logs",
|
| 55 |
+
logging_steps=100,
|
| 56 |
+
load_best_model_at_end=True,
|
| 57 |
+
metric_for_best_model="f1_micro"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
trainer = Trainer(
|
| 61 |
+
model=model,
|
| 62 |
+
args=args,
|
| 63 |
+
train_dataset=encoded["train"],
|
| 64 |
+
eval_dataset=encoded["validation"],
|
| 65 |
+
tokenizer=tokenizer,
|
| 66 |
+
compute_metrics=compute_metrics
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
print("π Training...")
|
| 70 |
+
trainer.train()
|
| 71 |
+
model.save_pretrained("./bert_emotion")
|
| 72 |
+
tokenizer.save_pretrained("./bert_emotion")
|
| 73 |
+
print("β
Saved fine-tuned model to ./bert_emotion")
|
voice_det.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import whisper
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
class Voice_Analysis:
|
| 5 |
+
def __init__(self, emotion_model="prithivMLmods/Speech-Emotion-Classification", whisper_size="base"):
|
| 6 |
+
# HF pipeline for speech emotion
|
| 7 |
+
self.classifier = pipeline(
|
| 8 |
+
"audio-classification",
|
| 9 |
+
model=emotion_model,
|
| 10 |
+
feature_extractor=emotion_model
|
| 11 |
+
)
|
| 12 |
+
# Whisper for ASR
|
| 13 |
+
self.modelwa = whisper.load_model(whisper_size)
|
| 14 |
+
|
| 15 |
+
def detect(self, path):
|
| 16 |
+
"""Run emotion classification on an audio file. Returns list of dicts with label/score."""
|
| 17 |
+
return self.classifier(path)
|
| 18 |
+
|
| 19 |
+
def subtitles(self, path):
|
| 20 |
+
"""Transcribe audio to text using Whisper."""
|
| 21 |
+
result = self.modelwa.transcribe(path)
|
| 22 |
+
return result.get("text", "").strip()
|