Upload neat\network.py with huggingface_hub
Browse files- neat//network.py +452 -0
neat//network.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Neural network implementation for BackpropNEAT."""
|
| 2 |
+
|
| 3 |
+
import jax
|
| 4 |
+
import jax.numpy as jnp
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 7 |
+
from .genome import Genome
|
| 8 |
+
import copy
|
| 9 |
+
import random
|
| 10 |
+
|
| 11 |
+
class Network:
|
| 12 |
+
"""Neural network for NEAT implementation.
|
| 13 |
+
Implements a strictly feed-forward network following original NEAT principles:
|
| 14 |
+
1. Start minimal - direct input-output connections only
|
| 15 |
+
2. Complexify gradually through structural mutations
|
| 16 |
+
3. Protect innovation through speciation
|
| 17 |
+
4. No recurrent connections (as per requirements)
|
| 18 |
+
"""
|
| 19 |
+
def __init__(self, genome: Genome):
|
| 20 |
+
"""Initialize network from genome."""
|
| 21 |
+
# Store genome and sizes
|
| 22 |
+
self.genome = genome
|
| 23 |
+
|
| 24 |
+
# Verify genome sizes match volleyball requirements
|
| 25 |
+
if genome.input_size != 12 or genome.output_size != 3:
|
| 26 |
+
print(f"Warning: Genome size mismatch. Expected 12 inputs, 3 outputs. Got {genome.input_size} inputs, {genome.output_size} outputs")
|
| 27 |
+
genome.input_size = 12
|
| 28 |
+
genome.output_size = 3
|
| 29 |
+
|
| 30 |
+
self.input_size = 12 # Fixed for volleyball
|
| 31 |
+
self.output_size = 3 # Fixed for volleyball
|
| 32 |
+
|
| 33 |
+
# Deep copy to avoid shared references
|
| 34 |
+
self.node_genes = {}
|
| 35 |
+
self.connection_genes = []
|
| 36 |
+
|
| 37 |
+
# Create input nodes (0 to 11)
|
| 38 |
+
for i in range(12):
|
| 39 |
+
self.node_genes[i] = NodeGene(i, 'input', 'linear')
|
| 40 |
+
|
| 41 |
+
# Create bias node (12)
|
| 42 |
+
self.node_genes[12] = NodeGene(12, 'bias', 'linear')
|
| 43 |
+
|
| 44 |
+
# Create output nodes (13, 14, 15)
|
| 45 |
+
for i in range(3):
|
| 46 |
+
node_id = 13 + i
|
| 47 |
+
self.node_genes[node_id] = NodeGene(node_id, 'output', 'sigmoid')
|
| 48 |
+
|
| 49 |
+
# Connect to bias with appropriate weight based on action type
|
| 50 |
+
if i < 2: # Left/Right actions: encourage movement
|
| 51 |
+
self.connection_genes.append(
|
| 52 |
+
ConnectionGene(12, node_id, random.uniform(0.0, 1.0), True)
|
| 53 |
+
)
|
| 54 |
+
else: # Jump action: neutral bias
|
| 55 |
+
self.connection_genes.append(
|
| 56 |
+
ConnectionGene(12, node_id, random.uniform(-0.5, 0.5), True)
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Connect to relevant inputs with larger weights
|
| 60 |
+
if i == 0: # Left action: connect to ball x position and velocity
|
| 61 |
+
self.connection_genes.append(
|
| 62 |
+
ConnectionGene(0, node_id, random.uniform(0.5, 1.5), True) # ball x
|
| 63 |
+
)
|
| 64 |
+
self.connection_genes.append(
|
| 65 |
+
ConnectionGene(2, node_id, random.uniform(0.5, 1.5), True) # ball vx
|
| 66 |
+
)
|
| 67 |
+
elif i == 1: # Right action: connect to ball x position and velocity
|
| 68 |
+
self.connection_genes.append(
|
| 69 |
+
ConnectionGene(0, node_id, random.uniform(-1.5, -0.5), True) # ball x
|
| 70 |
+
)
|
| 71 |
+
self.connection_genes.append(
|
| 72 |
+
ConnectionGene(2, node_id, random.uniform(-1.5, -0.5), True) # ball vx
|
| 73 |
+
)
|
| 74 |
+
else: # Jump action: connect to ball y position and velocity
|
| 75 |
+
self.connection_genes.append(
|
| 76 |
+
ConnectionGene(1, node_id, random.uniform(-1.5, -0.5), True) # ball y
|
| 77 |
+
)
|
| 78 |
+
self.connection_genes.append(
|
| 79 |
+
ConnectionGene(3, node_id, random.uniform(-1.0, 0.0), True) # ball vy
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Copy existing nodes (if any)
|
| 83 |
+
for node_id, node in genome.node_genes.items():
|
| 84 |
+
if node_id not in self.node_genes: # Skip I/O nodes
|
| 85 |
+
self.node_genes[node_id] = NodeGene(
|
| 86 |
+
node_id,
|
| 87 |
+
node.node_type,
|
| 88 |
+
node.activation
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Copy connections
|
| 92 |
+
if genome.connection_genes:
|
| 93 |
+
# Clear initial connections if genome has its own
|
| 94 |
+
self.connection_genes = []
|
| 95 |
+
for conn in genome.connection_genes:
|
| 96 |
+
# Verify connection nodes exist
|
| 97 |
+
if conn.source not in self.node_genes or conn.target not in self.node_genes:
|
| 98 |
+
print(f"Warning: Connection {conn.source}->{conn.target} references missing nodes")
|
| 99 |
+
continue
|
| 100 |
+
self.connection_genes.append(ConnectionGene(
|
| 101 |
+
conn.source,
|
| 102 |
+
conn.target,
|
| 103 |
+
conn.weight,
|
| 104 |
+
conn.enabled
|
| 105 |
+
))
|
| 106 |
+
|
| 107 |
+
# Verify output connections (13, 14, 15)
|
| 108 |
+
for output_id in [13, 14, 15]:
|
| 109 |
+
has_connection = False
|
| 110 |
+
for conn in self.connection_genes:
|
| 111 |
+
if conn.enabled and conn.target == output_id:
|
| 112 |
+
has_connection = True
|
| 113 |
+
break
|
| 114 |
+
|
| 115 |
+
if not has_connection:
|
| 116 |
+
print(f"Adding missing connections for output {output_id}")
|
| 117 |
+
# Connect to bias
|
| 118 |
+
self.connection_genes.append(
|
| 119 |
+
ConnectionGene(12, output_id, random.uniform(-1.0, 1.0), True)
|
| 120 |
+
)
|
| 121 |
+
# Connect to random input
|
| 122 |
+
input_id = random.randint(0, 11)
|
| 123 |
+
self.connection_genes.append(
|
| 124 |
+
ConnectionGene(input_id, output_id, random.uniform(-1.0, 1.0), True)
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Build evaluation order
|
| 128 |
+
self.node_evals = {}
|
| 129 |
+
self._build_feed_forward_order()
|
| 130 |
+
|
| 131 |
+
# Verify all outputs are properly connected
|
| 132 |
+
self._verify_outputs()
|
| 133 |
+
|
| 134 |
+
def _verify_outputs(self):
|
| 135 |
+
"""Verify all outputs have valid connections and evaluations."""
|
| 136 |
+
output_ids = {13, 14, 15} # Fixed output IDs
|
| 137 |
+
|
| 138 |
+
# Check node evaluations
|
| 139 |
+
for output_id in output_ids:
|
| 140 |
+
if output_id not in self.node_evals:
|
| 141 |
+
print(f"Adding missing evaluation for output {output_id}")
|
| 142 |
+
bias_id = 12
|
| 143 |
+
self.node_evals[output_id] = {
|
| 144 |
+
'inputs': [bias_id],
|
| 145 |
+
'weights': [1.0],
|
| 146 |
+
'activation': 'sigmoid'
|
| 147 |
+
}
|
| 148 |
+
# Add connection if needed
|
| 149 |
+
if not any(c.target == output_id and c.enabled for c in self.connection_genes):
|
| 150 |
+
self.connection_genes.append(
|
| 151 |
+
ConnectionGene(bias_id, output_id, 1.0, True)
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def _create_minimal_connections(self):
|
| 155 |
+
"""Create minimal initial connections for a new network."""
|
| 156 |
+
bias_id = 12
|
| 157 |
+
output_start = bias_id + 1
|
| 158 |
+
|
| 159 |
+
# Connect each output to bias and one random input
|
| 160 |
+
for i in range(self.output_size):
|
| 161 |
+
output_id = output_start + i
|
| 162 |
+
|
| 163 |
+
# Connect to bias
|
| 164 |
+
self.connection_genes.append(ConnectionGene(
|
| 165 |
+
bias_id, output_id,
|
| 166 |
+
random.uniform(-1.0, 1.0),
|
| 167 |
+
True
|
| 168 |
+
))
|
| 169 |
+
|
| 170 |
+
# Connect to random input
|
| 171 |
+
input_id = random.randint(0, self.input_size - 1)
|
| 172 |
+
self.connection_genes.append(ConnectionGene(
|
| 173 |
+
input_id, output_id,
|
| 174 |
+
random.uniform(-1.0, 1.0),
|
| 175 |
+
True
|
| 176 |
+
))
|
| 177 |
+
|
| 178 |
+
def _build_feed_forward_order(self):
|
| 179 |
+
"""Build evaluation order ensuring feed-forward only topology."""
|
| 180 |
+
try:
|
| 181 |
+
# Fixed node sets for volleyball
|
| 182 |
+
input_nodes = set(range(12)) # 0-11
|
| 183 |
+
bias_node = {12} # Bias node
|
| 184 |
+
output_nodes = {13, 14, 15} # Output nodes
|
| 185 |
+
|
| 186 |
+
# Create adjacency lists
|
| 187 |
+
connections = {}
|
| 188 |
+
for conn in self.connection_genes:
|
| 189 |
+
if not conn.enabled:
|
| 190 |
+
continue
|
| 191 |
+
if conn.source not in connections:
|
| 192 |
+
connections[conn.source] = []
|
| 193 |
+
connections[conn.source].append(conn.target)
|
| 194 |
+
|
| 195 |
+
# Start with inputs and bias evaluated
|
| 196 |
+
evaluated = input_nodes | bias_node
|
| 197 |
+
eval_order = []
|
| 198 |
+
|
| 199 |
+
# Helper function to check if a node can be evaluated
|
| 200 |
+
def can_evaluate(node_id):
|
| 201 |
+
if node_id in connections:
|
| 202 |
+
return all(dep in evaluated for dep in connections[node_id])
|
| 203 |
+
return True
|
| 204 |
+
|
| 205 |
+
# Keep trying to evaluate nodes until we can't anymore
|
| 206 |
+
while True:
|
| 207 |
+
ready_nodes = set()
|
| 208 |
+
for node_id in self.node_genes:
|
| 209 |
+
if node_id not in evaluated and can_evaluate(node_id):
|
| 210 |
+
ready_nodes.add(node_id)
|
| 211 |
+
|
| 212 |
+
if not ready_nodes:
|
| 213 |
+
break
|
| 214 |
+
|
| 215 |
+
# Add nodes to evaluation order
|
| 216 |
+
for node_id in sorted(ready_nodes):
|
| 217 |
+
incoming = []
|
| 218 |
+
incoming_weights = []
|
| 219 |
+
for conn in self.connection_genes:
|
| 220 |
+
if conn.enabled and conn.target == node_id:
|
| 221 |
+
incoming.append(conn.source)
|
| 222 |
+
incoming_weights.append(conn.weight)
|
| 223 |
+
|
| 224 |
+
if incoming: # Only add if node has inputs
|
| 225 |
+
self.node_evals[node_id] = {
|
| 226 |
+
'inputs': incoming,
|
| 227 |
+
'weights': incoming_weights,
|
| 228 |
+
'activation': self.node_genes[node_id].activation
|
| 229 |
+
}
|
| 230 |
+
eval_order.append(node_id)
|
| 231 |
+
|
| 232 |
+
evaluated.add(node_id)
|
| 233 |
+
|
| 234 |
+
# Ensure all outputs have evaluations
|
| 235 |
+
for output_id in output_nodes:
|
| 236 |
+
if output_id not in self.node_evals:
|
| 237 |
+
print(f"Adding default evaluation for output {output_id}")
|
| 238 |
+
# Connect to bias by default
|
| 239 |
+
self.node_evals[output_id] = {
|
| 240 |
+
'inputs': [12], # Bias node
|
| 241 |
+
'weights': [1.0],
|
| 242 |
+
'activation': 'sigmoid'
|
| 243 |
+
}
|
| 244 |
+
# Add connection if needed
|
| 245 |
+
if not any(c.target == output_id and c.enabled for c in self.connection_genes):
|
| 246 |
+
self.connection_genes.append(
|
| 247 |
+
ConnectionGene(12, output_id, 1.0, True)
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
except Exception as e:
|
| 251 |
+
print(f"Error in feed-forward build: {e}")
|
| 252 |
+
# Create minimal fallback evaluations
|
| 253 |
+
self.node_evals = {}
|
| 254 |
+
for i in range(3): # 3 outputs
|
| 255 |
+
output_id = 13 + i
|
| 256 |
+
self.node_evals[output_id] = {
|
| 257 |
+
'inputs': [12], # Bias node
|
| 258 |
+
'weights': [1.0],
|
| 259 |
+
'activation': 'sigmoid'
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
def forward(self, inputs: jnp.ndarray) -> jnp.ndarray:
|
| 263 |
+
"""Forward pass through the network."""
|
| 264 |
+
try:
|
| 265 |
+
# Only use first 8 inputs like original network
|
| 266 |
+
inputs = inputs[:8]
|
| 267 |
+
|
| 268 |
+
# Handle input shape
|
| 269 |
+
original_shape = inputs.shape
|
| 270 |
+
if len(inputs.shape) == 1:
|
| 271 |
+
inputs = inputs.reshape(1, -1)
|
| 272 |
+
batch_size = inputs.shape[0]
|
| 273 |
+
|
| 274 |
+
# Get max node ID for activation array
|
| 275 |
+
max_node_id = max(node.id for node in self.node_genes.values())
|
| 276 |
+
|
| 277 |
+
# Initialize activations array
|
| 278 |
+
activations = jnp.zeros((batch_size, max_node_id + 1))
|
| 279 |
+
|
| 280 |
+
# Set input values (0-7)
|
| 281 |
+
for i in range(8):
|
| 282 |
+
if i < len(inputs):
|
| 283 |
+
activations = activations.at[:, i].set(inputs[:, i])
|
| 284 |
+
else:
|
| 285 |
+
activations = activations.at[:, i].set(0.0)
|
| 286 |
+
|
| 287 |
+
# Initialize recurrent nodes (8-11) with previous outputs
|
| 288 |
+
# For now just use zeros, in the future we could store previous outputs
|
| 289 |
+
for i in range(8, 12):
|
| 290 |
+
activations = activations.at[:, i].set(0.0)
|
| 291 |
+
|
| 292 |
+
# Evaluate nodes in order (hidden then output)
|
| 293 |
+
for node_id, eval_info in self.node_evals.items():
|
| 294 |
+
try:
|
| 295 |
+
# Skip input and recurrent nodes
|
| 296 |
+
if node_id < 12:
|
| 297 |
+
continue
|
| 298 |
+
|
| 299 |
+
# Get weighted sum of inputs
|
| 300 |
+
act = jnp.zeros(batch_size)
|
| 301 |
+
for conn_source, conn_weight in zip(eval_info['inputs'], eval_info['weights']):
|
| 302 |
+
act += activations[:, conn_source] * conn_weight
|
| 303 |
+
|
| 304 |
+
# Apply activation function
|
| 305 |
+
if eval_info['activation'] == 'tanh':
|
| 306 |
+
act = jnp.tanh(act)
|
| 307 |
+
elif eval_info['activation'] == 'sigmoid':
|
| 308 |
+
act = jax.nn.sigmoid(act)
|
| 309 |
+
elif eval_info['activation'] == 'relu':
|
| 310 |
+
act = jax.nn.relu(act)
|
| 311 |
+
|
| 312 |
+
# Apply threshold like original network for output nodes
|
| 313 |
+
if node_id >= 20: # Output nodes
|
| 314 |
+
act = jnp.where(act > 0.75, 1.0, 0.0)
|
| 315 |
+
|
| 316 |
+
activations = activations.at[:, node_id].set(act)
|
| 317 |
+
except Exception as e:
|
| 318 |
+
print(f"Error at node {node_id}: {e}")
|
| 319 |
+
|
| 320 |
+
# Get output node activations
|
| 321 |
+
output = activations[:, -3:]
|
| 322 |
+
|
| 323 |
+
# Update recurrent nodes for next time step
|
| 324 |
+
# (In a real implementation, we'd need to store these)
|
| 325 |
+
for i in range(8, 12):
|
| 326 |
+
act = jnp.zeros(batch_size)
|
| 327 |
+
for conn_source, conn_weight in zip(eval_info['inputs'], eval_info['weights']):
|
| 328 |
+
if conn_source >= 20: # Only use output nodes
|
| 329 |
+
act += activations[:, conn_source] * conn_weight
|
| 330 |
+
activations = activations.at[:, i].set(jnp.tanh(act))
|
| 331 |
+
|
| 332 |
+
# Return to original shape
|
| 333 |
+
if len(original_shape) == 1:
|
| 334 |
+
output = output.reshape(-1)
|
| 335 |
+
|
| 336 |
+
return output
|
| 337 |
+
except Exception as e:
|
| 338 |
+
print(f"Error in forward pass: {e}")
|
| 339 |
+
return jnp.zeros(3)
|
| 340 |
+
|
| 341 |
+
def predict(self, inputs: jnp.ndarray) -> jnp.ndarray:
|
| 342 |
+
"""Make a prediction for the given inputs.
|
| 343 |
+
|
| 344 |
+
Args:
|
| 345 |
+
inputs: Input array of shape (input_size,) or (batch_size, input_size)
|
| 346 |
+
|
| 347 |
+
Returns:
|
| 348 |
+
Predictions of shape (3,) for single input or (batch_size, 3) for batch
|
| 349 |
+
"""
|
| 350 |
+
outputs = self.forward(inputs)
|
| 351 |
+
|
| 352 |
+
# Ensure correct output shape for volleyball (always 3 outputs)
|
| 353 |
+
if len(outputs.shape) == 1:
|
| 354 |
+
# Single input case - ensure shape (3,)
|
| 355 |
+
if outputs.shape[0] != 3:
|
| 356 |
+
print(f"Adjusting output shape from {outputs.shape} to (3,)")
|
| 357 |
+
return jnp.pad(outputs, (0, max(0, 3 - outputs.shape[0])))
|
| 358 |
+
return outputs
|
| 359 |
+
else:
|
| 360 |
+
# Batch case - ensure shape (batch_size, 3)
|
| 361 |
+
if outputs.shape[1] != 3:
|
| 362 |
+
print(f"Adjusting output shape from {outputs.shape} to (batch_size, 3)")
|
| 363 |
+
return jnp.pad(outputs, ((0, 0), (0, max(0, 3 - outputs.shape[1]))))
|
| 364 |
+
return outputs
|
| 365 |
+
|
| 366 |
+
def clone(self) -> 'Network':
|
| 367 |
+
"""Create a copy of this network with a cloned genome."""
|
| 368 |
+
return Network(self.genome.clone())
|
| 369 |
+
|
| 370 |
+
def mutate(self, config: Dict):
|
| 371 |
+
"""Mutate the network's genome."""
|
| 372 |
+
self.genome.mutate(config)
|
| 373 |
+
# Rebuild evaluation order after mutation
|
| 374 |
+
self._build_feed_forward_order()
|
| 375 |
+
|
| 376 |
+
def to_genome(self) -> Genome:
|
| 377 |
+
"""Convert network back to genome representation."""
|
| 378 |
+
genome = Genome(self.input_size, self.output_size)
|
| 379 |
+
genome.node_genes = copy.deepcopy(self.node_genes)
|
| 380 |
+
genome.connection_genes = copy.deepcopy(self.connection_genes)
|
| 381 |
+
return genome
|
| 382 |
+
|
| 383 |
+
class BaseNetwork:
|
| 384 |
+
"""Base Network class for NEAT."""
|
| 385 |
+
|
| 386 |
+
def __init__(self, n_inputs: int, n_outputs: int):
|
| 387 |
+
self.input_size = n_inputs
|
| 388 |
+
self.output_size = n_outputs
|
| 389 |
+
self.fitness = float('-inf')
|
| 390 |
+
|
| 391 |
+
# Initialize weights and biases with JAX
|
| 392 |
+
key = jax.random.PRNGKey(0)
|
| 393 |
+
# Use larger initial weights to encourage exploration
|
| 394 |
+
self.weights = jax.random.normal(key, (n_outputs, n_inputs)) * 0.5
|
| 395 |
+
# Add small positive bias to encourage some initial movement
|
| 396 |
+
self.bias = jnp.ones(n_outputs) * 0.1
|
| 397 |
+
|
| 398 |
+
def forward(self, x: jnp.ndarray) -> jnp.ndarray:
|
| 399 |
+
"""Forward pass through the network."""
|
| 400 |
+
if x.ndim > 1:
|
| 401 |
+
# Batched input
|
| 402 |
+
h = jnp.dot(x, self.weights.T) + self.bias[None, :]
|
| 403 |
+
else:
|
| 404 |
+
# Single input
|
| 405 |
+
h = jnp.dot(x, self.weights.T) + self.bias
|
| 406 |
+
return jnp.tanh(h)
|
| 407 |
+
|
| 408 |
+
def get_params(self) -> Tuple[jnp.ndarray, jnp.ndarray]:
|
| 409 |
+
"""Get network parameters."""
|
| 410 |
+
return self.weights, self.bias
|
| 411 |
+
|
| 412 |
+
def set_params(self, params: Tuple[jnp.ndarray, jnp.ndarray]):
|
| 413 |
+
"""Set network parameters."""
|
| 414 |
+
self.weights, self.bias = params
|
| 415 |
+
|
| 416 |
+
def get_weights_numpy(self) -> np.ndarray:
|
| 417 |
+
"""Get weights as numpy array for visualization."""
|
| 418 |
+
return np.array(self.weights)
|
| 419 |
+
|
| 420 |
+
class NodeGene:
|
| 421 |
+
"""Node gene containing node information."""
|
| 422 |
+
def __init__(self, node_id: int, node_type: str, activation: str = 'tanh'):
|
| 423 |
+
"""Initialize node gene.
|
| 424 |
+
|
| 425 |
+
Args:
|
| 426 |
+
node_id: Node ID
|
| 427 |
+
node_type: Type of node ('input', 'hidden', or 'output')
|
| 428 |
+
activation: Activation function ('tanh', 'sigmoid', or 'relu')
|
| 429 |
+
"""
|
| 430 |
+
self.id = node_id
|
| 431 |
+
self.type = node_type
|
| 432 |
+
self.activation = activation
|
| 433 |
+
# Initialize with larger random bias for hidden/output nodes
|
| 434 |
+
if node_type in ['hidden', 'output']:
|
| 435 |
+
key = jax.random.PRNGKey(node_id) # Use node_id as seed for reproducibility
|
| 436 |
+
self.bias = jax.random.normal(key, ()) * 0.5 # Increased from 0.1
|
| 437 |
+
else:
|
| 438 |
+
self.bias = 0.0 # No bias for input nodes
|
| 439 |
+
|
| 440 |
+
class ConnectionGene:
|
| 441 |
+
"""Gene representing a connection between nodes."""
|
| 442 |
+
def __init__(self, source: int, target: int, weight: float = None, enabled: bool = True):
|
| 443 |
+
self.source = source
|
| 444 |
+
self.target = target
|
| 445 |
+
# Initialize with larger weights if not provided
|
| 446 |
+
if weight is None:
|
| 447 |
+
key = jax.random.PRNGKey(hash((source, target)) % 2**32)
|
| 448 |
+
self.weight = jax.random.uniform(key, (), minval=-2.0, maxval=2.0)
|
| 449 |
+
else:
|
| 450 |
+
self.weight = weight
|
| 451 |
+
self.enabled = enabled
|
| 452 |
+
self.innovation = None # Will be set by NEAT
|