File size: 5,362 Bytes
ad93d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Parameters
CHUNK_DURATION = 30  # seconds
SAMPLING_RATE = 16000
transcriptions = []
folder_path = "/data/week_6/DATA/Audio Understanding (SCBx)/speechs/test"
audio_files = os.listdir(folder_path)
model_paths = {
    "monsoon": "scb10x/monsoon-whisper-medium-gigaspeech2",
    "whisper": "openai/whisper-large-v3-turbo",
    "Pathumma": "nectec/Pathumma-whisper-th-large-v3",
    # Add more models here if needed
}

model_path = "/data/week_6/Models/qwen"
output_name = "merged_transcriptions.csv"

import os

os.environ["HF_HOME"] = "/data/.cache"
import librosa
from transformers import (
    AutoProcessor,
    AutoModelForSpeechSeq2Seq,
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
)
import torch

import pandas as pd
from tqdm import tqdm


os.environ["HF_HOME"] = "/data/.cache"
pd.set_option("display.max_colwidth", None)


# transcribe chunks
def transcribe_audio_chunks(audio, sr, model, processor):
    chunk_size = CHUNK_DURATION * sr
    total_chunks = int(len(audio) / chunk_size) + 1
    text_chunks = []

    for i in range(total_chunks):
        start = i * chunk_size
        end = min((i + 1) * chunk_size, len(audio))
        chunk = audio[start:end]

        if len(chunk) < 1000:
            continue

        input_features = processor(
            chunk, sampling_rate=sr, return_tensors="pt"
        ).input_features.to(model.device)

        max_target = (
            model.config.max_target_positions
            if hasattr(model.config, "max_target_positions")
            else 448
        )
        max_new_tokens = max_target - 4

        with torch.no_grad():
            predicted_ids = model.generate(
                input_features, max_new_tokens=max_new_tokens
            )
        text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
        text_chunks.append(text)

    return " ".join(text_chunks)


df = pd.DataFrame({"File": audio_files})

# Loop transcribing with each model
for model_name, model_path in model_paths.items():
    print(f"\n🚀 Transcribing with model: {model_name}")

    processor = AutoProcessor.from_pretrained(model_path)
    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path).to("cuda").eval()

    # For wav2vec2 models, uncomment and use this:
    # processor = Wav2Vec2Processor.from_pretrained(model_path)
    # model = Wav2Vec2ForCTC.from_pretrained(model_path).to("cuda").eval()

    transcriptions = []

    for file_name in tqdm(audio_files, desc=f"[{model_name}] Transcribing"):
        try:
            file_path = os.path.join(folder_path, file_name)
            audio, sr = librosa.load(file_path, sr=SAMPLING_RATE)
            full_text = transcribe_audio_chunks(audio, sr, model, processor)

        except Exception as e:
            print(f"❌ Error on {file_name} with model {model_name}: {e}")
            full_text = f"[ERROR] {e}"

        transcriptions.append(full_text)

    df[f"Transcription_{model_name}"] = transcriptions

# Save to CSV
# df.to_csv("multi_model_transcriptions.csv", index=False, encoding='utf-8-sig')


# for merge DF
""" monsson = pd.read_csv("/data/week_6/Code/SATANG/monsoon_transcription.csv")
whisper = pd.read_csv("/data/week_6/Code/SATANG/whisper_transcription.csv")
wav2vec = pd.read_csv("/data/week_6/Code/SATANG/wev2vec.csv")
# Merge the three dataframes on the 'id' column
merged_df = monsson.merge(whisper, on='File', suffixes=('_monsoon', '_whisper'))
merged_df = merged_df.merge(wav2vec, on='File', suffixes=('', '_wav2vec')) 
merged_df = df.copy
display(merged_df) """


df = df[["File", "Transcription_monsoon", "Transcription_whisper", "Transcription"]]

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
model.to("cuda")

# %%
# Create pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
merged_outputs = []

# Loop through each row
for _, row in tqdm(df.iterrows(), total=len(df)):
    file_name = row["File"]
    monsoon = str(row["Transcription_monsoon"])
    whisper = str(row["Transcription_whisper"])

    if not monsoon.strip() and not whisper.strip():
        merged_outputs.append("")
        continue

    prompt = f"""
รวมข้อความต่อไปนี้จากสองระบบให้กลายเป็นข้อความเดียวที่สมบูรณ์ ชัดเจน และเป็นธรรมชาติที่สุดในภาษาไทย
หากมีคำผิดหรือเสียงเพี้ยนให้แก้ไขให้เหมาะสมและคงความหมายเดิม

📂 ชื่อไฟล์: {file_name}

🌀 Whisper:
{whisper}

🌧️ Monsoon:
{monsoon}

✅ ข้อความรวม (ภาษาไทย):
"""

    try:
        response = generator(prompt, max_new_tokens=256, temperature=0.3)
        merged = response[0]["generated_text"].replace(prompt, "").strip()
    except Exception as e:
        merged = f"[ERROR] {e}"
    # Print for debugging
    # print(f"Processed {file_name}: {merged}...")

    merged_outputs.append(merged)

# Save the output
df["Merged_transcription"] = merged_outputs
df.to_csv(output_name, index=False, encoding="utf-8-sig")