Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,755 Bytes
37de32d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
"""
This utils script contains PORTAGE of wai-core core methods for MapAnything.
"""
import logging
import re
from pathlib import Path
from typing import Any
import numpy as np
import torch
from mapanything.utils.wai.camera import (
CAMERA_KEYS,
convert_camera_coeffs_to_pinhole_matrix,
interpolate_extrinsics,
interpolate_intrinsics,
)
from mapanything.utils.wai.io import _get_method, _load_scene_meta
from mapanything.utils.wai.ops import crop
logger = logging.getLogger(__name__)
WAI_COLORMAP_PATH = Path(__file__).parent / "colormaps"
def load_data(fname: str | Path, format_type: str | None = None, **kwargs) -> Any:
"""
Loads data from a file using the appropriate method based on the file format.
Args:
fname (str or Path): The filename or path to load data from.
format_type (str, optional): The format type of the data. If None, it will be inferred from the file extension if possible.
Supported formats include: 'readable', 'scalar', 'image', 'binary', 'depth', 'normals',
'numpy', 'ptz', 'mmap', 'scene_meta', 'labeled_image', 'mesh', 'labeled_mesh', 'caption', "latents".
**kwargs: Additional keyword arguments to pass to the loading method.
Returns:
The loaded data in the format returned by the specific loading method.
Raises:
ValueError: If the format cannot be inferred from the file extension.
NotImplementedError: If the specified format is not supported.
FileExistsError: If the file does not exist.
"""
load_method = _get_method(fname, format_type, load=True)
return load_method(fname, **kwargs)
def store_data(
fname: str | Path,
data: Any,
format_type: str | None = None,
**kwargs,
) -> Any:
"""
Stores data to a file using the appropriate method based on the file format.
Args:
fname (str or Path): The filename or path to store data to.
data: The data to be stored.
format_type (str, optional): The format type of the data. If None, it will be inferred from the file extension.
**kwargs: Additional keyword arguments to pass to the storing method.
Returns:
The result of the storing method, which may vary depending on the method used.
"""
store_method = _get_method(fname, format_type, load=False)
Path(fname).parent.mkdir(parents=True, exist_ok=True)
return store_method(fname, data, **kwargs)
def get_frame(
scene_meta: dict[str, Any],
frame_key: int | str | float,
) -> dict[str, Any]:
"""
Get a frame from scene_meta based on name or index.
Args:
scene_meta: Dictionary containing scene metadata
frame_key: Either a string (frame name) or integer (frame index) or float (video timestamp)
Returns:
The frame data (dict)
"""
frame_idx = get_frame_index(scene_meta, frame_key)
if isinstance(frame_idx, int):
frame = scene_meta["frames"][frame_idx]
frame["_is_interpolated"] = False
else:
frame = {}
frame["frame_name"] = frame_key
left = int(frame_idx) # it's floor operation
assert left >= 0 and left < (len(scene_meta["frames"]) - 1), "Wrong index"
frame_left = scene_meta["frames"][left]
frame_right = scene_meta["frames"][left + 1]
# Interpolate intrinsics and extrinsics
frame["transform_matrix"] = interpolate_extrinsics(
frame_left["transform_matrix"],
frame_right["transform_matrix"],
frame_idx - left,
)
frame.update(
interpolate_intrinsics(
frame_left,
frame_right,
frame_idx - left,
)
)
frame["_is_interpolated"] = True
return frame
def get_intrinsics(
scene_meta,
frame_key,
fmt: str = "torch",
) -> torch.Tensor | np.ndarray | list:
frame = get_frame(scene_meta, frame_key)
return convert_camera_coeffs_to_pinhole_matrix(scene_meta, frame, fmt=fmt)
def get_extrinsics(
scene_meta,
frame_key,
fmt: str = "torch",
) -> torch.Tensor | np.ndarray | list | None:
frame = get_frame(scene_meta, frame_key)
if "transform_matrix" in frame:
if fmt == "torch":
return torch.tensor(frame["transform_matrix"]).reshape(4, 4).float()
elif fmt == "np":
return np.array(frame["transform_matrix"]).reshape(4, 4)
return frame["transform_matrix"]
else:
# TODO: should not happen if we enable interpolation
return None
def get_frame_index(
scene_meta: dict[str, Any],
frame_key: int | str | float,
frame_index_threshold_sec: float = 1e-4,
distance_threshold_sec: float = 2.0,
) -> int | float:
"""
Returns the frame index from scene_meta based on name (str) or index (int) or sub-frame index (float).
Args:
scene_meta: Dictionary containing scene metadata
frame_key: Either a string (frame name) or integer (frame index) or float (sub-frame index)
frame_index_threshold_sec: A threshold for nearest neighbor clipping for indexes (in seconds).
Default is 1e-4, which is 10000 fps.
distance_th: A threshold for maximum distance between interpolated frames (in seconds).
Returns:
Frame index (int)
Raises:
ValueError: If frame_key is not a string or integer or float
"""
if isinstance(frame_key, str):
try:
return scene_meta["frame_names"][frame_key]
except KeyError as err:
error_message = (
f"Frame name not found: {frame_key} - "
f"Please verify scene_meta.json of scene: {scene_meta['dataset_name']}/{scene_meta['scene_name']}"
)
logger.error(error_message)
raise KeyError(error_message) from err
if isinstance(frame_key, int):
return frame_key
if isinstance(frame_key, float):
# If exact hit
if frame_key in scene_meta["frame_names"]:
return scene_meta["frame_names"][frame_key]
frame_names = sorted(list(scene_meta["frame_names"].keys()))
distances = np.array([frm - frame_key for frm in frame_names])
left = int(np.nonzero(distances <= 0)[0][-1])
right = left + 1
# The last frame or rounding errors
if (
left == distances.shape[0] - 1
or abs(distances[left]) < frame_index_threshold_sec
):
return scene_meta["frame_names"][frame_names[int(left)]]
if abs(distances[right]) < frame_index_threshold_sec:
return scene_meta["frame_names"][frame_names[int(right)]]
interpolation_distance = distances[right] - distances[left]
if interpolation_distance > distance_threshold_sec:
raise ValueError(
f"Frame interpolation is forbidden for distances larger than {distance_threshold_sec}."
)
alpha = -distances[left] / interpolation_distance
return scene_meta["frame_names"][frame_names[int(left)]] + alpha
raise ValueError(f"Frame key type not supported: {frame_key} ({type(frame_key)}).")
def load_modality_data(
scene_root: Path | str,
results: dict[str, Any],
modality_dict: dict[str, Any],
modality: str,
frame: dict[str, Any] | None = None,
fmt: str = "torch",
) -> dict[str, Any]:
"""
Processes a modality by loading data from a specified path and updating the results dictionary.
This function extracts the format and path from the given modality dictionary, loads the data
from the specified path, and updates the results dictionary with the loaded data.
Args:
scene_root (str or Path): The root directory of the scene where the data is located.
results (dict): A dictionary to store the loaded modality data and optional frame path.
modality_dict (dict): A dictionary containing the modality information, including 'format'
and the path to the data.
modality (str): The key under which the loaded modality data will be stored in the results.
frame (dict, optional): A dictionary containing frame information. If provided, that means we are loading
frame modalities, otherwise it is scene modalities.
Returns:
dict: The updated results dictionary containing the loaded modality data.
"""
modality_format = modality_dict["format"]
# The modality is stored as a video
if "video" in modality_format:
assert isinstance(frame["frame_name"], float), "frame_name should be float"
video_file = None
if "chunks" in modality_dict:
video_list = modality_dict["chunks"]
# Get the correct chunk of the video
for video_chunk in video_list:
if video_chunk["start"] <= frame["frame_name"] <= video_chunk["end"]:
video_file = video_chunk
break
else:
# There is only one video (no chunks)
video_file = modality_dict
if "start" not in video_file:
video_file["start"] = 0
if "end" not in video_file:
video_file["end"] = float("inf")
if not (video_file["start"] <= frame["frame_name"] <= video_file["end"]):
video_file = None
# This timestamp is not available in any of the chunks
if video_file is None:
frame_name = frame["frame_name"]
logger.warning(
f"Modality {modality} ({modality_format}) is not available at time {frame_name}"
)
return results
# Load the modality from the video
loaded_modality = load_data(
Path(scene_root, video_file["file"]),
modality_format,
frame_key=frame["frame_name"] - video_file["start"],
)
if "bbox" in video_file:
loaded_modality = crop(loaded_modality, video_file["bbox"])
if loaded_modality is not None:
results[modality] = loaded_modality
if frame:
results[f"{modality}_fname"] = video_file["file"]
else:
modality_path = [v for k, v in modality_dict.items() if k != "format"][0]
if frame:
if modality_path in frame:
fname = frame[modality_path]
else:
fname = None
else:
fname = modality_path
if fname is not None:
loaded_modality = load_data(
Path(scene_root, fname),
modality_format,
frame_key=frame["frame_name"] if frame else None,
fmt=fmt,
)
results[modality] = loaded_modality
if frame:
results[f"{modality}_fname"] = frame[modality_path]
return results
def load_modality(
scene_root: Path | str,
modality_meta: dict[str, Any],
modality: str,
frame: dict[str, Any] | None = None,
fmt: str = "torch",
) -> dict[str, Any]:
"""
Loads modality data based on the provided metadata and updates the results dictionary.
This function navigates through the modality metadata to find the specified modality,
then loads the data for each modality found.
Args:
scene_root (str or Path): The root directory of the scene where the data is located.
modality_meta (dict): A nested dictionary containing metadata for various modalities.
modality (str): A string representing the path to the desired modality within the metadata,
using '/' as a separator for nested keys.
frame (dict, optional): A dictionary containing frame information. If provided, we are operating
on frame modalities, otherwise it is scene modalities.
Returns:
dict: A dictionary containing the loaded modality data.
"""
results = {}
# support for nested modalities like "pred_depth/metric3dv2"
modality_keys = modality.split("/")
current_modality = modality_meta
for key in modality_keys:
try:
current_modality = current_modality[key]
except KeyError as err:
error_message = (
f"Modality '{err.args[0]}' not found in modalities metadata. "
f"Please verify the scene_meta.json and the provided modalities in {scene_root}."
)
logger.error(error_message)
raise KeyError(error_message) from err
if "format" in current_modality:
results = load_modality_data(
scene_root, results, current_modality, modality, frame, fmt=fmt
)
else:
# nested modality, return last by default
logger.warning("Nested modality, returning last by default")
key = next(reversed(current_modality.keys()))
results = load_modality_data(
scene_root, results, current_modality[key], modality, frame, fmt=fmt
)
return results
def load_frame(
scene_root: Path | str,
frame_key: int | str | float,
modalities: str | list[str] | None = None,
scene_meta: dict[str, Any] | None = None,
load_intrinsics: bool = True,
load_extrinsics: bool = True,
fmt: str = "torch",
interpolate: bool = False,
) -> dict[str, Any]:
"""
Load a single frame from a scene with specified modalities.
Args:
scene_root (str or Path): The root directory of the scene where the data is located.
frame_key (int or str or float): Either a string (frame name) or integer (frame index) or float (video timestamp).
modalities (str or list[str], optional): The modality or list of modalities to load.
If None, only basic frame information is loaded.
scene_meta (dict, optional): Dictionary containing scene metadata. If None, it will be loaded
from scene_meta.json in the scene_root.
interpolate (bool, optional): Allow interpolating frames?
Returns:
dict: A dictionary containing the loaded frame data with the requested modalities.
"""
scene_root = Path(scene_root)
if scene_meta is None:
scene_meta = _load_scene_meta(scene_root / "scene_meta.json")
frame = get_frame(scene_meta, frame_key)
# compact, standarized frame representation
wai_frame = {}
if load_extrinsics:
extrinsics = get_extrinsics(
scene_meta,
frame_key,
fmt=fmt,
)
if extrinsics is not None:
wai_frame["extrinsics"] = extrinsics
if load_intrinsics:
camera_model = frame.get("camera_model", scene_meta.get("camera_model"))
wai_frame["camera_model"] = camera_model
if camera_model == "PINHOLE":
wai_frame["intrinsics"] = get_intrinsics(scene_meta, frame_key, fmt=fmt)
elif camera_model in ["OPENCV", "OPENCV_FISHEYE"]:
# optional per-frame intrinsics
for camera_key in CAMERA_KEYS:
if camera_key in frame:
wai_frame[camera_key] = float(frame[camera_key])
elif camera_key in scene_meta:
wai_frame[camera_key] = float(scene_meta[camera_key])
else:
error_message = (
f"Camera model not supported: {camera_model} - "
f"Please verify scene_meta.json of scene: {scene_meta['dataset_name']}/{scene_meta['scene_name']}"
)
logger.error(error_message)
raise NotImplementedError(error_message)
wai_frame["w"] = frame.get("w", scene_meta["w"] if "w" in scene_meta else None)
wai_frame["h"] = frame.get("h", scene_meta["h"] if "h" in scene_meta else None)
wai_frame["frame_name"] = frame["frame_name"]
wai_frame["frame_idx"] = get_frame_index(scene_meta, frame_key)
wai_frame["_is_interpolated"] = frame["_is_interpolated"]
if modalities is not None:
if isinstance(modalities, str):
modalities = [modalities]
for modality in modalities:
# Handle regex patterns in modality
if any(char in modality for char in ".|*+?()[]{}^$\\"):
# This is a regex pattern
pattern = re.compile(modality)
matching_modalities = [
m for m in scene_meta["frame_modalities"] if pattern.match(m)
]
if not matching_modalities:
raise ValueError(
f"No modalities match the pattern: {modality} in scene: {scene_root}"
)
# Use the first matching modality
modality = matching_modalities[0]
current_modalities = load_modality(
scene_root, scene_meta["frame_modalities"], modality, frame, fmt=fmt
)
wai_frame.update(current_modalities)
return wai_frame
def set_frame(
scene_meta: dict[str, Any],
frame_key: int | str,
new_frame: dict[str, Any],
sort: bool = False,
) -> dict[str, Any]:
"""
Replace a frame in scene_meta with a new frame.
Args:
scene_meta: Dictionary containing scene metadata.
frame_key: Either a string (frame name) or integer (frame index).
new_frame: New frame data to replace the existing frame.
sort: If True, sort the keys in the new_frame dictionary.
Returns:
Updated scene_meta dictionary.
"""
frame_idx = get_frame_index(scene_meta, frame_key)
if isinstance(frame_idx, float):
raise ValueError(
f"Setting frame for sub-frame frame_key is not supported: {frame_key} ({type(frame_key)})."
)
if sort:
new_frame = {k: new_frame[k] for k in sorted(new_frame)}
scene_meta["frames"][frame_idx] = new_frame
return scene_meta
def nest_modality(
frame_modalities: dict[str, Any],
modality_name: str,
) -> dict[str, Any]:
"""
Converts a flat modality structure into a nested one based on the modality name.
Args:
frame_modalities (dict): Dictionary containing frame modalities.
modality_name (str): The name of the modality to nest.
Returns:
dict: A dictionary with the nested modality structure.
"""
frame_modality = {}
if modality_name in frame_modalities:
frame_modality = frame_modalities[modality_name]
if "frame_key" in frame_modality:
# required for backwards compatibility
# converting non-nested format into nested one based on name
modality_name = frame_modality["frame_key"].split("_")[0]
frame_modality = {modality_name: frame_modality}
return frame_modality
|