Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import copy | |
| import os.path as osp | |
| import platform | |
| import time | |
| from abc import ABCMeta, abstractmethod | |
| from collections import OrderedDict | |
| from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from torch.optim import Optimizer | |
| import mmengine | |
| from mmengine.config import Config, ConfigDict | |
| from mmengine.dist import (broadcast, get_dist_info, infer_launcher, | |
| is_distributed) | |
| from mmengine.logging import MMLogger | |
| from mmengine.model.wrappers import is_model_wrapper | |
| from mmengine.optim import (BaseOptimWrapper, OptimWrapperDict, | |
| _ParamScheduler, build_optim_wrapper) | |
| from mmengine.registry import MODELS, OPTIM_WRAPPERS, PARAM_SCHEDULERS | |
| from mmengine.utils import digit_version | |
| from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env, | |
| set_multi_processing) | |
| ParamSchedulerType = Union[List[_ParamScheduler], Dict[str, | |
| List[_ParamScheduler]]] | |
| class BaseStrategy(metaclass=ABCMeta): | |
| """Base class for all strategies. | |
| In the process of supporting FSDP, DeepSpeed, and ColossalAI, the | |
| scalability of the Runner faced challenges, which led to the redefinition | |
| of the Runner's responsibilities. The Strategy abstraction was split out, | |
| which is responsible for constructing, initializing, and saving/loading | |
| the state of training components such as models, optimizers, and parameter | |
| schedulers. | |
| Warning: | |
| This is an experimental feature, and its interface is subject to | |
| change. | |
| Keyword Args: | |
| work_dir (str): The working directory to save checkpoints. The logs | |
| will be saved in the subdirectory of `work_dir` named | |
| :attr:`timestamp`. Defaults to 'work_dirs'. | |
| experiment_name (str, optional): Name of current experiment. If not | |
| specified, timestamp will be used as :attr:`experiment_name`. | |
| Defaults to None. | |
| env_kwargs (dict, optional): Environment config passed in | |
| :meth:`setup_env`. Defaults to None. | |
| log_kwargs (dict, optional): Logger config passed in | |
| :meth:`build_logger`. Defaults to None. | |
| auto_scale_lr (dict, Optional): Config to scale the learning rate | |
| automatically. It includes ``base_batch_size`` and ``enable``. | |
| ``base_batch_size`` is the batch size that the optimizer lr is | |
| based on. ``enable`` is the switch to turn on and off the feature. | |
| """ | |
| model: nn.Module | |
| optim_wrapper: BaseOptimWrapper | |
| param_schedulers: ParamSchedulerType | |
| def __init__( | |
| self, | |
| *, | |
| work_dir: str = 'work_dirs', | |
| experiment_name: Optional[str] = None, | |
| env_kwargs: Optional[dict] = None, | |
| log_kwargs: Optional[dict] = None, | |
| auto_scale_lr: Optional[dict] = None, | |
| ): | |
| self._work_dir = osp.abspath(work_dir) | |
| mmengine.mkdir_or_exist(self._work_dir) | |
| self._env_kwargs = env_kwargs or {} | |
| self._setup_env(**self._env_kwargs) | |
| if experiment_name is not None: | |
| self._experiment_name = f'{experiment_name}_{self.timestamp}' | |
| else: | |
| self._experiment_name = self.timestamp | |
| self._log_dir = osp.join(self.work_dir, self.timestamp) | |
| mmengine.mkdir_or_exist(self._log_dir) | |
| log_kwargs = log_kwargs or {} | |
| self.logger = self.build_logger(**log_kwargs) | |
| self._auto_scale_lr = auto_scale_lr | |
| self.dispatch_kwargs: dict = {} | |
| self._prepared = False | |
| def work_dir(self): | |
| return self._work_dir | |
| def log_dir(self): | |
| return self._log_dir | |
| def experiment_name(self): | |
| return self._experiment_name | |
| def launcher(self): | |
| return self._launcher | |
| def distributed(self): | |
| return self._distributed | |
| def seed(self): | |
| return self._seed | |
| def rank(self): | |
| return self._rank | |
| def world_size(self): | |
| return self._world_size | |
| def timestamp(self): | |
| return self._timestamp | |
| def randomness(self): | |
| return self._randomness | |
| def prepare( | |
| self, | |
| model: Union[nn.Module, dict], | |
| *, | |
| optim_wrapper: Union[BaseOptimWrapper, dict, None] = None, | |
| param_scheduler: Union[_ParamScheduler, Dict, List, None] = None, | |
| compile: Union[dict, bool] = False, | |
| dispatch_kwargs: Optional[dict] = None, | |
| ): | |
| """Prepare model and some components. | |
| Args: | |
| model (:obj:`torch.nn.Module` or dict): The model to be run. It | |
| can be a dict used for building a model. | |
| Keyword Args: | |
| optim_wrapper (BaseOptimWrapper or dict, optional): Computing the | |
| gradient of model parameters and updating them. | |
| Defaults to None. | |
| See :meth:`build_optim_wrapper` for examples. | |
| param_scheduler (_ParamScheduler or dict or list, optional): | |
| Parameter scheduler for updating optimizer parameters. If | |
| specified, :attr:`optim_wrapper` should also be specified. | |
| Defaults to None. | |
| See :meth:`build_param_scheduler` for examples. | |
| compile (dict, optional): Config to compile model. | |
| Defaults to False. Requires PyTorch>=2.0. | |
| dispatch_kwargs (dict, optional): Kwargs to be passed to other | |
| methods of Strategy. Defaults to None. | |
| """ | |
| def _setup_env( | |
| self, | |
| *, | |
| launcher: Optional[str] = None, | |
| cudnn_benchmark: bool = False, | |
| mp_cfg: Optional[dict] = None, | |
| dist_cfg: Optional[dict] = None, | |
| resource_limit: int = 4096, | |
| randomness: dict = dict(seed=None), | |
| ): | |
| """Setup environment. | |
| This method will do the following things: | |
| 1. setup multi-processing | |
| 2. setup distributed | |
| 3. set random seed | |
| Keyword Args: | |
| launcher (str, optional): Way to launcher multi-process. Supported | |
| launchers are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' | |
| is provided, non-distributed environment will be launched. | |
| If launcher is None, the launcher will be inferred according | |
| some specified environments. Defaults to None. | |
| cudnn_benchmark (bool): Whether to enable cudnn benchmark. | |
| Defaults to False. | |
| mp_cfg (dict, optional): Multi-processing config. Defaults to None. | |
| dist_cfg (dict, optional): Distributed config. Defaults to None. | |
| resource_limit (int): Resource limit. Defaults to 4096. | |
| randomness (dict): Some settings to make the experiment as | |
| reproducible as possible like seed and deterministic. | |
| Defaults to ``dict(seed=None)``. If seed is None, a random | |
| number will be generated and it will be broadcasted to all | |
| other processes if in distributed environment. | |
| If ``cudnn_benchmark`` is ``True`` in but ``deterministic`` is | |
| ``True`` in ``randomness``, the value of | |
| ``torch.backends.cudnn.benchmark`` will be ``False`` finally. | |
| """ | |
| if launcher is None: | |
| launcher = infer_launcher() | |
| self._launcher = launcher | |
| if self._launcher == 'none': | |
| self._distributed = False | |
| else: | |
| self._distributed = True | |
| if cudnn_benchmark: | |
| torch.backends.cudnn.benchmark = True | |
| mp_cfg = mp_cfg if mp_cfg is not None else {} | |
| set_multi_processing(**mp_cfg, distributed=self._distributed) | |
| # init distributed env first, since logger depends on the dist info. | |
| if self._distributed and not is_distributed(): | |
| dist_cfg = dist_cfg if dist_cfg is not None else {} | |
| self._setup_distributed(launcher, **dist_cfg) | |
| self._rank, self._world_size = get_dist_info() | |
| timestamp = torch.tensor(time.time(), dtype=torch.float64) | |
| # broadcast timestamp from 0 process to other processes | |
| broadcast(timestamp) | |
| self._timestamp = time.strftime('%Y%m%d_%H%M%S', | |
| time.localtime(timestamp.item())) | |
| # https://github.com/pytorch/pytorch/issues/973 | |
| # set resource limit | |
| if platform.system() != 'Windows': | |
| import resource | |
| rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
| base_soft_limit = rlimit[0] | |
| hard_limit = rlimit[1] | |
| soft_limit = min(max(resource_limit, base_soft_limit), hard_limit) | |
| resource.setrlimit(resource.RLIMIT_NOFILE, | |
| (soft_limit, hard_limit)) | |
| self._randomness = randomness | |
| self._set_randomness(**randomness) | |
| def _setup_distributed(self, *args, **kwargs): | |
| """Setup distributed environment.""" | |
| pass | |
| def _set_randomness( | |
| self, | |
| seed: Optional[int] = None, | |
| diff_rank_seed: bool = False, | |
| deterministic: bool = False, | |
| ) -> None: | |
| """Set random seed to guarantee reproducible results. | |
| Args: | |
| seed (int, optional): A number to set random modules. | |
| Defaults to None. | |
| diff_rank_seed (bool): Whether or not set different seeds according | |
| to global rank. Defaults to False. | |
| deterministic (bool): Whether to set the deterministic option for | |
| CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` | |
| to True and `torch.backends.cudnn.benchmark` to False. | |
| Defaults to False. | |
| See https://pytorch.org/docs/stable/notes/randomness.html for | |
| more details. | |
| """ | |
| from mmengine.runner import set_random_seed | |
| self._seed = set_random_seed( | |
| seed=seed, | |
| deterministic=deterministic, | |
| diff_rank_seed=diff_rank_seed) | |
| def build_model(self, model: Union[nn.Module, dict]) -> nn.Module: | |
| """Build model. | |
| If ``model`` is a dict, it will be used to build a ``nn.Module`` | |
| object. Otherwise, if ``model`` is a ``nn.Module`` object it will be | |
| returned directly. | |
| An example of ``model``:: | |
| model = dict(type='ResNet') | |
| Args: | |
| model (nn.Module or dict): A ``nn.Module`` object or a dict to | |
| build ``nn.Module`` object. If ``model`` is a ``nn.Module`` | |
| object, just returns itself. | |
| Note: | |
| The returned model must implement ``train_step``, ``test_step`` | |
| if ``runner.train`` or ``runner.test`` will be called. If | |
| ``runner.val`` will be called or ``val_cfg`` is configured, | |
| model must implement `val_step`. | |
| Returns: | |
| nn.Module: Model build from ``model``. | |
| """ | |
| if isinstance(model, nn.Module): | |
| return model | |
| elif isinstance(model, dict): | |
| model = MODELS.build(model) | |
| return model # type: ignore | |
| else: | |
| raise TypeError('model should be a nn.Module object or dict, ' | |
| f'but got {model}') | |
| def compile_model( | |
| self, | |
| model: nn.Module, | |
| compile: Union[dict, bool] = False, | |
| ) -> nn.Module: | |
| """Compile model. | |
| Args: | |
| model (nn.Module): Model to compile. | |
| Returns: | |
| nn.Module: Compiled model. | |
| """ | |
| if isinstance(compile, bool) and not compile: | |
| return model | |
| assert digit_version(TORCH_VERSION) >= digit_version('2.0.0'), ( | |
| 'PyTorch >= 2.0.0 is required to enable torch.compile') | |
| if isinstance(compile, bool): | |
| compile = dict() | |
| target = compile.pop('target', 'forward') | |
| func = getattr(model, target) | |
| compiled_func = torch.compile(func, **compile) | |
| setattr(model, target, compiled_func) | |
| self.logger.info('Model has been "compiled". The first few iterations ' | |
| 'will be slow, please be patient.') | |
| return model | |
| def _init_model_weights(self, model: nn.Module) -> nn.Module: | |
| """Initialize the model weights if the model has | |
| :meth:`init_weights`""" | |
| if (hasattr(model, 'init_weights') and self.dispatch_kwargs.get( | |
| 'init_weights_for_test_or_val', True)): | |
| model.init_weights() | |
| # sync params and buffers | |
| for _, params in model.state_dict().items(): | |
| broadcast(params) | |
| return model | |
| def build_optim_wrapper( | |
| self, | |
| optim_wrapper: Union[Optimizer, BaseOptimWrapper, dict], | |
| model: Optional[nn.Module] = None, | |
| ) -> BaseOptimWrapper: | |
| """Build optimizer wrapper. | |
| If ``optim_wrapper`` is a config dict for only one optimizer, | |
| the keys must contain ``optimizer``, and ``type`` is optional. | |
| It will build a :obj:`OptimWrapper` by default. | |
| If ``optim_wrapper`` is a config dict for multiple optimizers, i.e., | |
| it has multiple keys and each key is for an optimizer wrapper. The | |
| constructor must be specified since | |
| :obj:`DefaultOptimizerConstructor` cannot handle the building of | |
| training with multiple optimizers. | |
| If ``optim_wrapper`` is a dict of pre-built optimizer wrappers, i.e., | |
| each value of ``optim_wrapper`` represents an ``OptimWrapper`` | |
| instance. ``build_optim_wrapper`` will directly build the | |
| :obj:`OptimWrapperDict` instance from ``optim_wrapper``. | |
| Args: | |
| optim_wrapper (BaseOptimWrapper or dict): An OptimWrapper object or a | |
| dict to build OptimWrapper objects. If ``optim_wrapper`` is an | |
| OptimWrapper, just return an ``OptimizeWrapper`` instance. | |
| Note: | |
| For single optimizer training, if `optim_wrapper` is a config | |
| dict, `type` is optional(defaults to :obj:`OptimWrapper`) and it | |
| must contain `optimizer` to build the corresponding optimizer. | |
| Examples: | |
| >>> # build an optimizer | |
| >>> optim_wrapper_cfg = dict(type='OptimWrapper', optimizer=dict( | |
| ... type='SGD', lr=0.01)) | |
| >>> # optim_wrapper_cfg = dict(optimizer=dict(type='SGD', lr=0.01)) | |
| >>> # is also valid. | |
| >>> optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) | |
| >>> optim_wrapper | |
| Type: OptimWrapper | |
| accumulative_counts: 1 | |
| optimizer: | |
| SGD ( | |
| Parameter Group 0 | |
| dampening: 0 | |
| lr: 0.01 | |
| momentum: 0 | |
| nesterov: False | |
| weight_decay: 0 | |
| ) | |
| >>> # build optimizer without `type` | |
| >>> optim_wrapper_cfg = dict(optimizer=dict(type='SGD', lr=0.01)) | |
| >>> optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) | |
| >>> optim_wrapper | |
| Type: OptimWrapper | |
| accumulative_counts: 1 | |
| optimizer: | |
| SGD ( | |
| Parameter Group 0 | |
| dampening: 0 | |
| lr: 0.01 | |
| maximize: False | |
| momentum: 0 | |
| nesterov: False | |
| weight_decay: 0 | |
| ) | |
| >>> # build multiple optimizers | |
| >>> optim_wrapper_cfg = dict( | |
| ... generator=dict(type='OptimWrapper', optimizer=dict( | |
| ... type='SGD', lr=0.01)), | |
| ... discriminator=dict(type='OptimWrapper', optimizer=dict( | |
| ... type='Adam', lr=0.001)) | |
| ... # need to customize a multiple optimizer constructor | |
| ... constructor='CustomMultiOptimizerConstructor', | |
| ...) | |
| >>> optim_wrapper = runner.optim_wrapper(optim_wrapper_cfg) | |
| >>> optim_wrapper | |
| name: generator | |
| Type: OptimWrapper | |
| accumulative_counts: 1 | |
| optimizer: | |
| SGD ( | |
| Parameter Group 0 | |
| dampening: 0 | |
| lr: 0.1 | |
| momentum: 0 | |
| nesterov: False | |
| weight_decay: 0 | |
| ) | |
| name: discriminator | |
| Type: OptimWrapper | |
| accumulative_counts: 1 | |
| optimizer: | |
| 'discriminator': Adam ( | |
| Parameter Group 0 | |
| dampening: 0 | |
| lr: 0.02 | |
| momentum: 0 | |
| nesterov: False | |
| weight_decay: 0 | |
| ) | |
| Important: | |
| If you need to build multiple optimizers, you should implement a | |
| MultiOptimWrapperConstructor which gets parameters passed to | |
| corresponding optimizers and compose the ``OptimWrapperDict``. | |
| More details about how to customize OptimizerConstructor can be | |
| found at `optimizer-docs`_. | |
| Returns: | |
| BaseOptimWrapper: Optimizer wrapper build from ``optimizer_cfg``. | |
| """ # noqa: E501 | |
| if isinstance(optim_wrapper, BaseOptimWrapper): | |
| return optim_wrapper | |
| if isinstance(optim_wrapper, (dict, ConfigDict, Config)): | |
| # optimizer must be defined for single optimizer training. | |
| optimizer = optim_wrapper.get('optimizer', None) | |
| # If optimizer is a built `Optimizer` instance, the optimizer | |
| # wrapper should be built by `OPTIM_WRAPPERS` registry. | |
| if isinstance(optimizer, Optimizer): | |
| optim_wrapper.setdefault('type', 'OptimWrapper') | |
| return OPTIM_WRAPPERS.build(optim_wrapper) # type: ignore | |
| # If `optimizer` is not None or `constructor` is defined, it means, | |
| # optimizer wrapper will be built by optimizer wrapper | |
| # constructor. Therefore, `build_optim_wrapper` should be called. | |
| if optimizer is not None or 'constructor' in optim_wrapper: | |
| assert model is not None | |
| return build_optim_wrapper(model, optim_wrapper) | |
| else: | |
| # if `optimizer` is not defined, it should be the case of | |
| # training with multiple optimizers. If `constructor` is not | |
| # defined either, each value of `optim_wrapper` must be an | |
| # `OptimWrapper` instance since `DefaultOptimizerConstructor` | |
| # will not handle the case of training with multiple | |
| # optimizers. `build_optim_wrapper` will directly build the | |
| # `OptimWrapperDict` instance from `optim_wrapper.` | |
| optim_wrappers = OrderedDict() | |
| for name, optim in optim_wrapper.items(): | |
| if not isinstance(optim, BaseOptimWrapper): | |
| raise ValueError( | |
| 'each item mush be an optimizer object when ' | |
| '"type" and "constructor" are not in ' | |
| f'optimizer, but got {name}={optim}') | |
| optim_wrappers[name] = optim | |
| return OptimWrapperDict(**optim_wrappers) | |
| else: | |
| raise TypeError('optimizer wrapper should be an OptimWrapper ' | |
| f'object or dict, but got {optim_wrapper}') | |
| def _build_param_scheduler( | |
| self, | |
| scheduler: Union[_ParamScheduler, Dict, List], | |
| optim_wrapper: BaseOptimWrapper, | |
| default_args: dict, | |
| ) -> List[_ParamScheduler]: | |
| """Build parameter schedulers for a single optimizer. | |
| Args: | |
| scheduler (_ParamScheduler or dict or list): A Param Scheduler | |
| object or a dict or list of dict to build parameter schedulers. | |
| optim_wrapper (BaseOptimWrapper): An optimizer wrapper object is | |
| passed to construct ParamScheduler object. | |
| Returns: | |
| list[_ParamScheduler]: List of parameter schedulers build from | |
| ``scheduler``. | |
| Note: | |
| If the train loop is built, when building parameter schedulers, | |
| it supports setting the max epochs/iters as the default ``end`` | |
| of schedulers, and supports converting epoch-based schedulers | |
| to iter-based according to the ``convert_to_iter_based`` key. | |
| """ | |
| if not isinstance(scheduler, Sequence): | |
| schedulers = [scheduler] | |
| else: | |
| schedulers = scheduler | |
| max_epochs = default_args.pop('max_epochs', None) | |
| max_iters = default_args.pop('max_iters', None) | |
| param_schedulers = [] | |
| for scheduler in schedulers: | |
| if isinstance(scheduler, _ParamScheduler): | |
| param_schedulers.append(scheduler) | |
| elif isinstance(scheduler, dict): | |
| _scheduler = copy.deepcopy(scheduler) | |
| # Set default end | |
| if _scheduler.get('by_epoch', True): | |
| if max_epochs is None: | |
| raise ValueError( | |
| 'max_epochs must be specified in default_args') | |
| default_end = max_epochs | |
| else: | |
| if max_iters is None: | |
| raise ValueError( | |
| 'max_iters must be specified in default_args') | |
| default_end = max_iters | |
| _scheduler.setdefault('end', default_end) | |
| self.logger.debug( | |
| f'The `end` of {_scheduler["type"]} is not set. ' | |
| 'Use the max epochs/iters of train loop as default.') | |
| param_schedulers.append( | |
| PARAM_SCHEDULERS.build( | |
| _scheduler, | |
| default_args=dict( | |
| optimizer=optim_wrapper, **default_args))) | |
| else: | |
| raise TypeError( | |
| 'scheduler should be a _ParamScheduler object or dict, ' | |
| f'but got {scheduler}') | |
| return param_schedulers | |
| def build_param_scheduler( | |
| self, | |
| scheduler: Union[_ParamScheduler, Dict, List], | |
| optim_wrapper: BaseOptimWrapper, | |
| default_args: Optional[dict] = None, | |
| ) -> ParamSchedulerType: | |
| """Build parameter schedulers. | |
| ``build_param_scheduler`` should be called after | |
| ``build_optim_wrapper`` because the building logic will change | |
| according to the number of optimizers built by the runner. | |
| The cases are as below: | |
| - Single optimizer: When only one optimizer is built and used in the | |
| runner, ``build_param_scheduler`` will return a list of | |
| parameter schedulers. | |
| - Multiple optimizers: When two or more optimizers are built and used | |
| in runner, ``build_param_scheduler`` will return a dict containing | |
| the same keys with multiple optimizers and each value is a list of | |
| parameter schedulers. Note that, if you want different optimizers to | |
| use different parameter schedulers to update optimizer's | |
| hyper-parameters, the input parameter ``scheduler`` also needs to be | |
| a dict and its key are consistent with multiple optimizers. | |
| Otherwise, the same parameter schedulers will be used to update | |
| optimizer's hyper-parameters. | |
| Args: | |
| scheduler (_ParamScheduler or dict or list): A Param Scheduler | |
| object or a dict or list of dict to build parameter schedulers. | |
| Examples: | |
| >>> # build one scheduler | |
| >>> optim_cfg = dict(dict(type='SGD', lr=0.01)) | |
| >>> runner.optim_wrapper = runner.build_optim_wrapper( | |
| >>> optim_cfg) | |
| >>> scheduler_cfg = dict(type='MultiStepLR', milestones=[1, 2]) | |
| >>> schedulers = runner.build_param_scheduler(scheduler_cfg) | |
| >>> schedulers | |
| [<mmengine.optim.scheduler.lr_scheduler.MultiStepLR at 0x7f70f6966290>] # noqa: E501 | |
| >>> # build multiple schedulers | |
| >>> scheduler_cfg = [ | |
| ... dict(type='MultiStepLR', milestones=[1, 2]), | |
| ... dict(type='StepLR', step_size=1) | |
| ... ] | |
| >>> schedulers = runner.build_param_scheduler(scheduler_cfg) | |
| >>> schedulers | |
| [<mmengine.optim.scheduler.lr_scheduler.MultiStepLR at 0x7f70f60dd3d0>, # noqa: E501 | |
| <mmengine.optim.scheduler.lr_scheduler.StepLR at 0x7f70f6eb6150>] | |
| Above examples only provide the case of one optimizer and one scheduler | |
| or multiple schedulers. If you want to know how to set parameter | |
| scheduler when using multiple optimizers, you can find more examples | |
| `optimizer-docs`_. | |
| Returns: | |
| list[_ParamScheduler] or dict[str, list[_ParamScheduler]]: List of | |
| parameter schedulers or a dictionary contains list of parameter | |
| schedulers build from ``scheduler``. | |
| .. _optimizer-docs: | |
| https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html | |
| """ | |
| if default_args is None: | |
| default_args = {} | |
| if 'epoch_length' in self.dispatch_kwargs: | |
| default_args['epoch_length'] = self.dispatch_kwargs[ | |
| 'epoch_length'] | |
| if 'max_epochs' in self.dispatch_kwargs: | |
| default_args['max_epochs'] = self.dispatch_kwargs['max_epochs'] | |
| if 'max_iters' in self.dispatch_kwargs: | |
| default_args['max_iters'] = self.dispatch_kwargs['max_iters'] | |
| param_schedulers: ParamSchedulerType | |
| if not isinstance(optim_wrapper, OptimWrapperDict): | |
| # Since `OptimWrapperDict` inherits from `OptimWrapper`, | |
| # `isinstance(self.optim_wrapper, OptimWrapper)` cannot tell | |
| # whether `self.optim_wrapper` is an `OptimizerWrapper` or | |
| # `OptimWrapperDict` instance. Therefore, here we simply check | |
| # self.optim_wrapper is not an `OptimWrapperDict` instance and | |
| # then assert it is an OptimWrapper instance. | |
| assert isinstance(optim_wrapper, BaseOptimWrapper), ( | |
| '`build_optimizer` should be called before' | |
| '`build_param_scheduler` because the latter depends ' | |
| 'on the former') | |
| param_schedulers = self._build_param_scheduler( | |
| scheduler, optim_wrapper, default_args) # type: ignore | |
| return param_schedulers | |
| else: | |
| param_schedulers = dict() | |
| for name, optimizer in optim_wrapper.items(): | |
| if isinstance(scheduler, dict) and 'type' not in scheduler: | |
| # scheduler is a dict and each item is a ParamScheduler | |
| # object or a config to build ParamScheduler objects | |
| param_schedulers[name] = self._build_param_scheduler( | |
| scheduler[name], optimizer, default_args) | |
| else: | |
| param_schedulers[name] = self._build_param_scheduler( | |
| scheduler, optimizer, default_args) | |
| return param_schedulers | |
| def _scale_lr(self) -> None: | |
| """Automatically scaling learning rate in training according to the | |
| ratio of ``base_batch_size`` in ``autoscalelr_cfg`` and real batch | |
| size. | |
| It scales the learning rate linearly according to the | |
| `paper <https://arxiv.org/abs/1706.02677>`_. | |
| Note: | |
| ``scale_lr`` must be called after building optimizer wrappers | |
| and before building parameter schedulers. | |
| """ | |
| if (self._auto_scale_lr is None | |
| or not self._auto_scale_lr.get('enable', False)): | |
| return None | |
| assert 'base_batch_size' in self._auto_scale_lr, \ | |
| 'Lack of `base_batch_size` in `auto_scale_lr`.' | |
| try: | |
| real_bs = self.world_size * self.dispatch_kwargs['train_micro_batch_size_per_gpu'] | |
| except: | |
| real_bs = self.world_size * self.train_micro_batch_size_per_gpu ## for FSDP strategy | |
| base_bs = self._auto_scale_lr['base_batch_size'] | |
| ratio = float(real_bs) / float(base_bs) | |
| self.logger.info(f'LR is set based on batch size of {base_bs} ' | |
| f'and the current batch size is {real_bs}. ' | |
| f'Scaling the original LR by {ratio}.') | |
| def _is_built(schedulers): | |
| if isinstance(schedulers, dict): | |
| return False if 'type' in schedulers else any( | |
| _is_built(s) for s in schedulers.values()) | |
| if isinstance(schedulers, list): | |
| return any(_is_built(s) for s in schedulers) | |
| return isinstance(schedulers, _ParamScheduler) | |
| if _is_built(self.param_schedulers): | |
| raise RuntimeError('`scale_lr` should be called before building ' | |
| 'ParamScheduler because ParamScheduler will ' | |
| 'store initial lr from optimizer wrappers') | |
| assert isinstance(self.optim_wrapper, BaseOptimWrapper), \ | |
| '`scale_lr should be called after building OptimWrapper' | |
| if isinstance(self.optim_wrapper, OptimWrapperDict): | |
| wrappers = list(self.optim_wrapper.values()) | |
| else: | |
| wrappers = [self.optim_wrapper] # type: ignore | |
| for wrapper in wrappers: | |
| for group in wrapper.optimizer.param_groups: | |
| group['lr'] = group['lr'] * ratio | |
| def build_logger( | |
| self, | |
| log_level: Union[int, str] = 'INFO', | |
| log_file: Optional[str] = None, | |
| **kwargs, | |
| ) -> MMLogger: | |
| """Build a global asscessable MMLogger. | |
| Args: | |
| log_level (int or str): The log level of MMLogger handlers. | |
| Defaults to 'INFO'. | |
| log_file (str, optional): Path of filename to save log. | |
| Defaults to None. | |
| **kwargs: Remaining parameters passed to ``MMLogger``. | |
| Returns: | |
| MMLogger: A MMLogger object build from ``logger``. | |
| """ | |
| if log_file is None: | |
| log_file = osp.join(self.log_dir, f'{self._timestamp}.log') | |
| log_cfg = dict(log_level=log_level, log_file=log_file, **kwargs) | |
| log_cfg.setdefault('name', self.experiment_name) | |
| # `torch.compile` in PyTorch 2.0 could close all user defined handlers | |
| # unexpectedly. Using file mode 'a' can help prevent abnormal | |
| # termination of the FileHandler and ensure that the log file could | |
| # be continuously updated during the lifespan of the runner. | |
| log_cfg.setdefault('file_mode', 'a') | |
| return MMLogger.get_instance(**log_cfg) # type: ignore | |
| def model_state_dict(self) -> dict: | |
| """Get model state dict.""" | |
| from mmengine.runner import weights_to_cpu | |
| return weights_to_cpu(self.model.state_dict()) | |
| def optim_state_dict(self) -> dict: | |
| """Get optimizer state dict.""" | |
| if isinstance(self.optim_wrapper, BaseOptimWrapper): | |
| return self.optim_wrapper.state_dict() | |
| else: | |
| raise TypeError('self.optim_wrapper should be a `BaseOptimWrapper`' | |
| f' instance, but got {self.optim_wrapper}') | |
| def scheduler_state_dict(self) -> Union[dict, list]: | |
| """Get parameter scheduler state dict.""" | |
| if isinstance(self.param_schedulers, dict): | |
| state_dict: dict = dict() | |
| for name, schedulers in self.param_schedulers.items(): | |
| state_dict[name] = [] | |
| for scheduler in schedulers: | |
| state_dict[name].append(scheduler.state_dict()) | |
| return state_dict | |
| else: | |
| state_list = [] | |
| for scheduler in self.param_schedulers: # type: ignore | |
| state_list.append(scheduler.state_dict()) | |
| return state_list | |
| def load_model_state_dict( | |
| self, | |
| state_dict: dict, | |
| *, | |
| strict: bool = False, | |
| revise_keys: list = [(r'^module.', '')], | |
| ) -> None: | |
| """Load model state from dict.""" | |
| from mmengine.runner.checkpoint import _load_checkpoint_to_model | |
| if is_model_wrapper(self.model): | |
| model = self.model.module | |
| else: | |
| model = self.model | |
| _load_checkpoint_to_model(model, state_dict, strict, revise_keys) | |
| def load_optim_state_dict(self, state_dict: dict) -> None: | |
| """Load optimizer state from dict.""" | |
| self.optim_wrapper.load_state_dict(state_dict) | |
| def load_scheduler_state_dict(self, state_dict: Union[dict, list]) -> None: | |
| """Load scheduler state from dict.""" | |
| if isinstance(self.param_schedulers, dict): | |
| assert isinstance(state_dict, dict) | |
| for name, schedulers in self.param_schedulers.items(): | |
| for scheduler, ckpt_scheduler in zip(schedulers, | |
| state_dict[name]): | |
| scheduler.load_state_dict(ckpt_scheduler) | |
| else: | |
| for scheduler, ckpt_scheduler in zip( | |
| self.param_schedulers, # type: ignore | |
| state_dict): | |
| scheduler.load_state_dict(ckpt_scheduler) | |
| def load_or_resume( | |
| self, | |
| *, | |
| load_from: Optional[str] = None, | |
| resume: Union[bool, str] = False, | |
| ) -> Optional[dict]: | |
| """Load checkpoint or resume from checkpoint. | |
| Args: | |
| load_from (str, optional): The checkpoint file to load from. | |
| Defaults to None. | |
| resume (bool or str): Whether to resume training. Defaults to | |
| False. If ``resume`` is True and ``load_from`` is None, | |
| automatically to find latest checkpoint from ``work_dir``. | |
| If not found, resuming does nothing. If ``resume`` is a string, | |
| it will be treated as the checkpoint file to resume from. | |
| """ | |
| from mmengine.runner import find_latest_checkpoint | |
| if not resume and load_from is None: | |
| return None | |
| # decide to load from checkpoint or resume from checkpoint | |
| resume_from = None | |
| if isinstance(resume, str): | |
| resume_from = resume | |
| elif resume and load_from is None: | |
| # auto resume from the latest checkpoint | |
| resume_from = find_latest_checkpoint(self._work_dir) | |
| self.logger.info( | |
| f'Auto resumed from the latest checkpoint {resume_from}.') | |
| elif resume and load_from is not None: | |
| # resume from the specified checkpoint | |
| resume_from = load_from | |
| if resume_from is not None: | |
| return self.resume(resume_from) | |
| elif load_from is not None: | |
| return self.load_checkpoint(load_from) | |
| return None | |
| def load_checkpoint( | |
| self, | |
| filename: str, | |
| *, | |
| map_location: Union[str, Callable] = 'cpu', | |
| strict: bool = False, | |
| revise_keys: list = [(r'^module.', '')], | |
| callback: Optional[Callable] = None, | |
| ) -> dict: | |
| """Load checkpoint from given ``filename``. | |
| Args: | |
| filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
| ``open-mmlab://xxx``. | |
| Keyword Args: | |
| map_location (str or callable): A string or a callable function to | |
| specifying how to remap storage locations. | |
| Defaults to 'cpu'. | |
| strict (bool): strict (bool): Whether to allow different params for | |
| the model and checkpoint. | |
| revise_keys (list): A list of customized keywords to modify the | |
| state_dict in checkpoint. Each item is a (pattern, replacement) | |
| pair of the regular expression operations. Defaults to strip | |
| the prefix 'module.' by [(r'^module\\.', '')]. | |
| callback (callable, callable): Callback function to modify the | |
| checkpoint after loading the checkpoint. | |
| Defaults to None. | |
| """ | |
| def resume( | |
| self, | |
| filename: str, | |
| *, | |
| resume_optimizer: bool = True, | |
| resume_param_scheduler: bool = True, | |
| map_location: Union[str, Callable] = 'default', | |
| callback: Optional[Callable] = None, | |
| ) -> dict: | |
| """Resume training from given ``filename``. | |
| Four types of states will be resumed. | |
| - model state | |
| - optimizer state | |
| - scheduler state | |
| - randomness state | |
| Args: | |
| filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
| ``open-mmlab://xxx``. | |
| Keyword Args: | |
| resume_optimizer (bool): Whether to resume optimizer state. | |
| Defaults to True. | |
| resume_param_scheduler (bool): Whether to resume param scheduler | |
| state. Defaults to True. | |
| map_location (str or callable):A string or a callable function to | |
| specifying how to remap storage locations. | |
| Defaults to 'default'. | |
| callback (callable, callable): Callback function to modify the | |
| checkpoint before saving the checkpoint. | |
| Defaults to None. | |
| """ | |
| def save_checkpoint( | |
| self, | |
| filename: str, | |
| *, | |
| save_optimizer: bool = True, | |
| save_param_scheduler: bool = True, | |
| extra_ckpt: Optional[dict] = None, | |
| callback: Optional[Callable] = None, | |
| ) -> None: | |
| """Save checkpoint to given ``filename``. | |
| Args: | |
| filename (str): Filename to save checkpoint. | |
| Keyword Args: | |
| save_optimizer (bool): Whether to save the optimizer to | |
| the checkpoint. Defaults to True. | |
| save_param_scheduler (bool): Whether to save the param_scheduler | |
| to the checkpoint. Defaults to True. | |
| extra_ckpt (dict, optional): Extra checkpoint to save. | |
| Defaults to None. | |
| callback (callable, callable): Callback function to modify the | |
| checkpoint before saving the checkpoint. | |
| Defaults to None. | |
| """ | |
| def collect_env(self) -> Tuple[dict, dict]: | |
| """Collect the information of the running environments.""" | |
| system_env = collect_env() | |
| runtime_env: OrderedDict = OrderedDict() | |
| runtime_env.update(self._env_kwargs) | |
| runtime_env.update(self.randomness) | |
| runtime_env['Distributed launcher'] = self.launcher | |
| runtime_env['Distributed training'] = self.distributed | |
| runtime_env['GPU number'] = self.world_size | |
| return system_env, runtime_env | |
| def _prepared_components(self): | |
| return_items = [self.model] | |
| if hasattr(self, 'optim_wrapper'): | |
| return_items.append(self.optim_wrapper) | |
| if hasattr(self, 'param_schedulers'): | |
| return_items.append(self.param_schedulers) | |
| return return_items[0] if len(return_items) == 1 else return_items | |