Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import copy | |
| import itertools | |
| import logging | |
| from typing import Dict, Optional | |
| from mmengine.logging import print_log | |
| from mmengine.model import is_model_wrapper | |
| from mmengine.registry import HOOKS, MODELS | |
| from .hook import DATA_BATCH, Hook | |
| class EMAHook(Hook): | |
| """A Hook to apply Exponential Moving Average (EMA) on the model during | |
| training. | |
| Note: | |
| - EMAHook takes priority over CheckpointHook. | |
| - The original model parameters are actually saved in ema field after | |
| train. | |
| - ``begin_iter`` and ``begin_epoch`` cannot be set at the same time. | |
| Args: | |
| ema_type (str): The type of EMA strategy to use. You can find the | |
| supported strategies in :mod:`mmengine.model.averaged_model`. | |
| Defaults to 'ExponentialMovingAverage'. | |
| strict_load (bool): Whether to strictly enforce that the keys of | |
| ``state_dict`` in checkpoint match the keys returned by | |
| ``self.module.state_dict``. Defaults to False. | |
| Changed in v0.3.0. | |
| begin_iter (int): The number of iteration to enable ``EMAHook``. | |
| Defaults to 0. | |
| begin_epoch (int): The number of epoch to enable ``EMAHook``. | |
| Defaults to 0. | |
| **kwargs: Keyword arguments passed to subclasses of | |
| :obj:`BaseAveragedModel` | |
| """ | |
| priority = 'NORMAL' | |
| def __init__(self, | |
| ema_type: str = 'ExponentialMovingAverage', | |
| strict_load: bool = False, | |
| begin_iter: int = 0, | |
| begin_epoch: int = 0, | |
| **kwargs): | |
| self.strict_load = strict_load | |
| self.ema_cfg = dict(type=ema_type, **kwargs) | |
| assert not (begin_iter != 0 and begin_epoch != 0), ( | |
| '`begin_iter` and `begin_epoch` should not be both set.') | |
| assert begin_iter >= 0, ( | |
| '`begin_iter` must larger than or equal to 0, ' | |
| f'but got begin_iter: {begin_iter}') | |
| assert begin_epoch >= 0, ( | |
| '`begin_epoch` must larger than or equal to 0, ' | |
| f'but got begin_epoch: {begin_epoch}') | |
| self.begin_iter = begin_iter | |
| self.begin_epoch = begin_epoch | |
| # If `begin_epoch` and `begin_iter` are not set, `EMAHook` will be | |
| # enabled at 0 iteration. | |
| self.enabled_by_epoch = self.begin_epoch > 0 | |
| def before_run(self, runner) -> None: | |
| """Create an ema copy of the model. | |
| Args: | |
| runner (Runner): The runner of the training process. | |
| """ | |
| model = runner.model | |
| if is_model_wrapper(model): | |
| model = model.module | |
| self.src_model = model | |
| self.ema_model = MODELS.build( | |
| self.ema_cfg, default_args=dict(model=self.src_model)) | |
| def before_train(self, runner) -> None: | |
| """Check the begin_epoch/iter is smaller than max_epochs/iters. | |
| Args: | |
| runner (Runner): The runner of the training process. | |
| """ | |
| if self.enabled_by_epoch: | |
| assert self.begin_epoch <= runner.max_epochs, ( | |
| 'self.begin_epoch should be smaller than or equal to ' | |
| f'runner.max_epochs: {runner.max_epochs}, but got ' | |
| f'begin_epoch: {self.begin_epoch}') | |
| else: | |
| assert self.begin_iter <= runner.max_iters, ( | |
| 'self.begin_iter should be smaller than or equal to ' | |
| f'runner.max_iters: {runner.max_iters}, but got ' | |
| f'begin_iter: {self.begin_iter}') | |
| def after_train_iter(self, | |
| runner, | |
| batch_idx: int, | |
| data_batch: DATA_BATCH = None, | |
| outputs: Optional[dict] = None) -> None: | |
| """Update ema parameter. | |
| Args: | |
| runner (Runner): The runner of the training process. | |
| batch_idx (int): The index of the current batch in the train loop. | |
| data_batch (Sequence[dict], optional): Data from dataloader. | |
| Defaults to None. | |
| outputs (dict, optional): Outputs from model. Defaults to None. | |
| """ | |
| if self._ema_started(runner): | |
| self.ema_model.update_parameters(self.src_model) | |
| else: | |
| ema_params = self.ema_model.module.state_dict() | |
| src_params = self.src_model.state_dict() | |
| for k, p in ema_params.items(): | |
| p.data.copy_(src_params[k].data) | |
| def before_val_epoch(self, runner) -> None: | |
| """We load parameter values from ema model to source model before | |
| validation. | |
| Args: | |
| runner (Runner): The runner of the training process. | |
| """ | |
| self._swap_ema_parameters() | |
| def after_val_epoch(self, | |
| runner, | |
| metrics: Optional[Dict[str, float]] = None) -> None: | |
| """We recover source model's parameter from ema model after validation. | |
| Args: | |
| runner (Runner): The runner of the validation process. | |
| metrics (Dict[str, float], optional): Evaluation results of all | |
| metrics on validation dataset. The keys are the names of the | |
| metrics, and the values are corresponding results. | |
| """ | |
| self._swap_ema_parameters() | |
| def before_test_epoch(self, runner) -> None: | |
| """We load parameter values from ema model to source model before test. | |
| Args: | |
| runner (Runner): The runner of the training process. | |
| """ | |
| self._swap_ema_parameters() | |
| def after_test_epoch(self, | |
| runner, | |
| metrics: Optional[Dict[str, float]] = None) -> None: | |
| """We recover source model's parameter from ema model after test. | |
| Args: | |
| runner (Runner): The runner of the testing process. | |
| metrics (Dict[str, float], optional): Evaluation results of all | |
| metrics on test dataset. The keys are the names of the | |
| metrics, and the values are corresponding results. | |
| """ | |
| self._swap_ema_parameters() | |
| def before_save_checkpoint(self, runner, checkpoint: dict) -> None: | |
| """Save ema parameters to checkpoint. | |
| Args: | |
| runner (Runner): The runner of the testing process. | |
| """ | |
| checkpoint['ema_state_dict'] = self.ema_model.state_dict() | |
| # Save ema parameters to the source model's state dict so that we | |
| # can directly load the averaged model weights for deployment. | |
| # Swapping the state_dict key-values instead of swapping model | |
| # parameters because the state_dict is a shallow copy of model | |
| # parameters. | |
| self._swap_ema_state_dict(checkpoint) | |
| def after_load_checkpoint(self, runner, checkpoint: dict) -> None: | |
| """Resume ema parameters from checkpoint. | |
| Args: | |
| runner (Runner): The runner of the testing process. | |
| """ | |
| from mmengine.runner.checkpoint import load_state_dict | |
| if 'ema_state_dict' in checkpoint and runner._resume: | |
| # The original model parameters are actually saved in ema | |
| # field swap the weights back to resume ema state. | |
| self._swap_ema_state_dict(checkpoint) | |
| self.ema_model.load_state_dict( | |
| checkpoint['ema_state_dict'], strict=self.strict_load) | |
| # Support load checkpoint without ema state dict. | |
| else: | |
| if runner._resume: | |
| print_log( | |
| 'There is no `ema_state_dict` in checkpoint. ' | |
| '`EMAHook` will make a copy of `state_dict` as the ' | |
| 'initial `ema_state_dict`', 'current', logging.WARNING) | |
| load_state_dict( | |
| self.ema_model.module, | |
| copy.deepcopy(checkpoint['state_dict']), | |
| strict=self.strict_load) | |
| def _swap_ema_parameters(self) -> None: | |
| """Swap the parameter of model with ema_model.""" | |
| avg_param = ( | |
| itertools.chain(self.ema_model.module.parameters(), | |
| self.ema_model.module.buffers()) | |
| if self.ema_model.update_buffers else | |
| self.ema_model.module.parameters()) | |
| src_param = ( | |
| itertools.chain(self.src_model.parameters(), | |
| self.src_model.buffers()) | |
| if self.ema_model.update_buffers else self.src_model.parameters()) | |
| for p_avg, p_src in zip(avg_param, src_param): | |
| tmp = p_avg.data.clone() | |
| p_avg.data.copy_(p_src.data) | |
| p_src.data.copy_(tmp) | |
| def _swap_ema_state_dict(self, checkpoint): | |
| """Swap the state dict values of model with ema_model.""" | |
| model_state = checkpoint['state_dict'] | |
| ema_state = checkpoint['ema_state_dict'] | |
| for k in ema_state: | |
| if k[:7] == 'module.': | |
| tmp = ema_state[k] | |
| ema_state[k] = model_state[k[7:]] | |
| model_state[k[7:]] = tmp | |
| def _ema_started(self, runner) -> bool: | |
| """Whether ``EMAHook`` has been initialized at current iteration or | |
| epoch. | |
| :attr:`ema_model` will be initialized when ``runner.iter`` or | |
| ``runner.epoch`` is greater than ``self.begin`` for the first time. | |
| Args: | |
| runner (Runner): Runner of the training, validation process. | |
| Returns: | |
| bool: Whether ``EMAHook`` has been initialized. | |
| """ | |
| if self.enabled_by_epoch: | |
| return runner.epoch + 1 >= self.begin_epoch | |
| else: | |
| return runner.iter + 1 >= self.begin_iter | |