Spaces:
Sleeping
Sleeping
File size: 18,796 Bytes
2b89d68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
"""
🤖 Fagun Browser Automation Testing Agent - AI Thinking Engine
==============================================================
Advanced AI-powered decision making and adaptive testing intelligence.
Author: Mejbaur Bahar Fagun
Role: Software Engineer in Test
LinkedIn: https://www.linkedin.com/in/mejbaur/
"""
import asyncio
import logging
import json
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass
from datetime import datetime
import random
from playwright.async_api import Page, Locator
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import HumanMessage, SystemMessage
logger = logging.getLogger(__name__)
@dataclass
class ThinkingStep:
"""Represents a step in the AI thinking process."""
step_number: int
thought: str
action: str
reasoning: str
confidence: float
timestamp: datetime
@dataclass
class TestStrategy:
"""Represents a testing strategy determined by AI."""
approach: str
priority_order: List[str]
focus_areas: List[str]
risk_assessment: Dict[str, float]
estimated_duration: int # minutes
reasoning: str
class AIThinkingEngine:
"""Advanced AI thinking engine for intelligent testing decisions."""
def __init__(self, llm: BaseChatModel, page: Page):
self.llm = llm
self.page = page
self.thinking_history: List[ThinkingStep] = []
self.context_memory: Dict[str, Any] = {}
self.learning_patterns: Dict[str, List[Any]] = {}
async def analyze_page_intelligence(self) -> Dict[str, Any]:
"""Perform intelligent analysis of the current page."""
logger.info("🧠 Starting intelligent page analysis...")
analysis = {
"page_type": await self._determine_page_type(),
"form_complexity": await self._assess_form_complexity(),
"security_indicators": await self._detect_security_indicators(),
"user_flow_analysis": await self._analyze_user_flow(),
"potential_issues": await self._identify_potential_issues(),
"testing_opportunities": await self._identify_testing_opportunities()
}
logger.info(f"✅ Page analysis complete: {analysis['page_type']} page with {analysis['form_complexity']} complexity")
return analysis
async def _determine_page_type(self) -> str:
"""Determine the type of page (login, registration, checkout, etc.)."""
try:
page_content = await self.page.content()
page_text = page_content.lower()
# Check for specific page indicators
if any(keyword in page_text for keyword in ["login", "sign in", "log in", "authenticate"]):
return "login"
elif any(keyword in page_text for keyword in ["register", "sign up", "create account", "join"]):
return "registration"
elif any(keyword in page_text for keyword in ["checkout", "payment", "billing", "purchase"]):
return "checkout"
elif any(keyword in page_text for keyword in ["contact", "message", "inquiry", "support"]):
return "contact"
elif any(keyword in page_text for keyword in ["search", "find", "look for"]):
return "search"
elif any(keyword in page_text for keyword in ["profile", "account", "settings", "preferences"]):
return "profile"
else:
return "general"
except Exception as e:
logger.error(f"Error determining page type: {e}")
return "unknown"
async def _assess_form_complexity(self) -> str:
"""Assess the complexity of forms on the page."""
try:
form_count = await self.page.locator("form").count()
input_count = await self.page.locator("input").count()
textarea_count = await self.page.locator("textarea").count()
select_count = await self.page.locator("select").count()
total_fields = input_count + textarea_count + select_count
if total_fields == 0:
return "none"
elif total_fields <= 3:
return "simple"
elif total_fields <= 7:
return "moderate"
elif total_fields <= 15:
return "complex"
else:
return "very_complex"
except Exception as e:
logger.error(f"Error assessing form complexity: {e}")
return "unknown"
async def _detect_security_indicators(self) -> List[str]:
"""Detect security-related indicators on the page."""
security_indicators = []
try:
page_content = await self.page.content()
# Check for security-related attributes
if 'data-security' in page_content:
security_indicators.append("custom_security_attributes")
if 'csrf' in page_content.lower():
security_indicators.append("csrf_protection")
if 'captcha' in page_content.lower():
security_indicators.append("captcha_protection")
if 'recaptcha' in page_content.lower():
security_indicators.append("recaptcha_protection")
# Check for HTTPS
if self.page.url.startswith('https://'):
security_indicators.append("https_enabled")
# Check for security headers (would need to check response headers)
security_indicators.append("basic_web_security")
except Exception as e:
logger.error(f"Error detecting security indicators: {e}")
return security_indicators
async def _analyze_user_flow(self) -> Dict[str, Any]:
"""Analyze the user flow and navigation patterns."""
try:
# Find navigation elements
nav_links = await self.page.locator("nav a, .navigation a, .menu a").count()
buttons = await self.page.locator("button").count()
forms = await self.page.locator("form").count()
# Analyze form submission patterns
submit_buttons = await self.page.locator("input[type='submit'], button[type='submit']").count()
return {
"navigation_links": nav_links,
"interactive_buttons": buttons,
"forms": forms,
"submit_buttons": submit_buttons,
"user_journey_complexity": "high" if nav_links > 10 or forms > 3 else "medium" if nav_links > 5 or forms > 1 else "low"
}
except Exception as e:
logger.error(f"Error analyzing user flow: {e}")
return {"error": str(e)}
async def _identify_potential_issues(self) -> List[str]:
"""Identify potential issues or vulnerabilities."""
issues = []
try:
page_content = await self.page.content()
# Check for common issues
if 'password' in page_content.lower() and 'type="password"' not in page_content:
issues.append("password_field_not_secured")
if 'email' in page_content.lower() and 'type="email"' not in page_content:
issues.append("email_field_not_typed")
if 'required' not in page_content and 'form' in page_content.lower():
issues.append("missing_required_validation")
if 'onclick' in page_content.lower():
issues.append("inline_javascript_detected")
if 'http://' in page_content and 'https://' in page_content:
issues.append("mixed_content_detected")
except Exception as e:
logger.error(f"Error identifying potential issues: {e}")
return issues
async def _identify_testing_opportunities(self) -> List[str]:
"""Identify specific testing opportunities."""
opportunities = []
try:
# Check for different types of inputs
input_types = await self.page.locator("input[type]").all()
type_set = set()
for input_elem in input_types:
input_type = await input_elem.get_attribute("type")
if input_type:
type_set.add(input_type)
if "email" in type_set:
opportunities.append("email_validation_testing")
if "password" in type_set:
opportunities.append("password_security_testing")
if "number" in type_set:
opportunities.append("numeric_input_testing")
if "date" in type_set:
opportunities.append("date_validation_testing")
if "file" in type_set:
opportunities.append("file_upload_testing")
# Check for forms
if await self.page.locator("form").count() > 0:
opportunities.append("form_submission_testing")
opportunities.append("cross_field_validation_testing")
# Check for dynamic content
if await self.page.locator("[data-*]").count() > 0:
opportunities.append("dynamic_content_testing")
except Exception as e:
logger.error(f"Error identifying testing opportunities: {e}")
return opportunities
async def generate_testing_strategy(self, page_analysis: Dict[str, Any]) -> TestStrategy:
"""Generate an intelligent testing strategy based on page analysis."""
logger.info("🎯 Generating intelligent testing strategy...")
# Use AI to determine the best testing approach
strategy_prompt = f"""
Based on the following page analysis, generate a comprehensive testing strategy:
Page Type: {page_analysis.get('page_type', 'unknown')}
Form Complexity: {page_analysis.get('form_complexity', 'unknown')}
Security Indicators: {page_analysis.get('security_indicators', [])}
Potential Issues: {page_analysis.get('potential_issues', [])}
Testing Opportunities: {page_analysis.get('testing_opportunities', [])}
Please provide a JSON response with:
1. approach: The overall testing approach (comprehensive, focused, security-focused, etc.)
2. priority_order: List of testing priorities in order
3. focus_areas: Specific areas to focus testing on
4. risk_assessment: Risk levels for different areas (high, medium, low)
5. estimated_duration: Estimated testing duration in minutes
6. reasoning: Explanation of the strategy
Focus on:
- Form validation testing (valid, invalid, edge cases)
- Security testing (SQL injection, XSS, CSRF)
- User experience testing
- Cross-browser compatibility
- Performance testing
"""
try:
messages = [
SystemMessage(content="You are an expert QA engineer specializing in web application testing. Provide detailed, actionable testing strategies."),
HumanMessage(content=strategy_prompt)
]
response = await self.llm.ainvoke(messages)
strategy_data = json.loads(response.content)
strategy = TestStrategy(
approach=strategy_data.get("approach", "comprehensive"),
priority_order=strategy_data.get("priority_order", []),
focus_areas=strategy_data.get("focus_areas", []),
risk_assessment=strategy_data.get("risk_assessment", {}),
estimated_duration=strategy_data.get("estimated_duration", 30),
reasoning=strategy_data.get("reasoning", "AI-generated strategy")
)
logger.info(f"✅ Testing strategy generated: {strategy.approach} approach")
return strategy
except Exception as e:
logger.error(f"Error generating testing strategy: {e}")
# Fallback strategy
return TestStrategy(
approach="comprehensive",
priority_order=["form_validation", "security_testing", "user_experience"],
focus_areas=["input_validation", "authentication", "data_integrity"],
risk_assessment={"security": 0.8, "validation": 0.6, "ux": 0.4},
estimated_duration=30,
reasoning="Fallback strategy due to AI error"
)
async def think_through_scenario(self, scenario: str, context: Dict[str, Any]) -> List[ThinkingStep]:
"""Think through a specific testing scenario step by step."""
logger.info(f"🤔 Thinking through scenario: {scenario}")
thinking_prompt = f"""
As an expert QA engineer, think through this testing scenario step by step:
Scenario: {scenario}
Context: {json.dumps(context, indent=2)}
Provide your thinking process as a JSON array of steps, where each step has:
- step_number: Sequential number
- thought: What you're thinking about
- action: What action you would take
- reasoning: Why you would take this action
- confidence: Confidence level (0.0 to 1.0)
Consider:
1. What could go wrong?
2. What edge cases should be tested?
3. What security implications exist?
4. How can we ensure comprehensive coverage?
5. What are the user experience implications?
"""
try:
messages = [
SystemMessage(content="You are an expert QA engineer. Think through testing scenarios systematically and provide detailed reasoning."),
HumanMessage(content=thinking_prompt)
]
response = await self.llm.ainvoke(messages)
thinking_data = json.loads(response.content)
thinking_steps = []
for i, step_data in enumerate(thinking_data, 1):
step = ThinkingStep(
step_number=i,
thought=step_data.get("thought", ""),
action=step_data.get("action", ""),
reasoning=step_data.get("reasoning", ""),
confidence=step_data.get("confidence", 0.5),
timestamp=datetime.now()
)
thinking_steps.append(step)
self.thinking_history.extend(thinking_steps)
logger.info(f"✅ Generated {len(thinking_steps)} thinking steps")
return thinking_steps
except Exception as e:
logger.error(f"Error thinking through scenario: {e}")
return []
async def adapt_testing_approach(self, previous_results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Adapt the testing approach based on previous results."""
logger.info("🔄 Adapting testing approach based on previous results...")
if not previous_results:
return {"adaptation": "no_previous_data", "recommendations": []}
# Analyze failure patterns
failures = [r for r in previous_results if not r.get("success", True)]
success_rate = (len(previous_results) - len(failures)) / len(previous_results)
adaptations = {
"success_rate": success_rate,
"adaptations": [],
"recommendations": []
}
if success_rate < 0.5:
adaptations["adaptations"].append("increase_test_coverage")
adaptations["recommendations"].append("Focus on high-priority test cases first")
# Analyze specific failure types
validation_failures = [r for r in failures if "validation" in r.get("scenario_name", "").lower()]
if validation_failures:
adaptations["adaptations"].append("enhance_validation_testing")
adaptations["recommendations"].append("Implement more robust validation testing")
security_failures = [r for r in failures if any(x in r.get("scenario_name", "").lower() for x in ["sql", "xss", "injection"])]
if security_failures:
adaptations["adaptations"].append("strengthen_security_testing")
adaptations["recommendations"].append("Focus on security vulnerability testing")
logger.info(f"✅ Testing approach adapted: {len(adaptations['adaptations'])} adaptations")
return adaptations
async def learn_from_results(self, test_results: List[Dict[str, Any]]) -> None:
"""Learn from test results to improve future testing."""
logger.info("📚 Learning from test results...")
for result in test_results:
scenario_type = result.get("scenario_name", "").split(" - ")[0]
if scenario_type not in self.learning_patterns:
self.learning_patterns[scenario_type] = []
self.learning_patterns[scenario_type].append({
"success": result.get("success", False),
"actual_result": result.get("actual_result", ""),
"timestamp": datetime.now().isoformat()
})
# Update context memory with learned patterns
self.context_memory["learning_patterns"] = self.learning_patterns
self.context_memory["last_learning_update"] = datetime.now().isoformat()
logger.info(f"✅ Learned from {len(test_results)} test results")
def get_thinking_summary(self) -> Dict[str, Any]:
"""Get a summary of the AI thinking process."""
if not self.thinking_history:
return {"message": "No thinking history available"}
total_steps = len(self.thinking_history)
avg_confidence = sum(step.confidence for step in self.thinking_history) / total_steps
return {
"total_thinking_steps": total_steps,
"average_confidence": round(avg_confidence, 2),
"thinking_areas": list(set(step.action.split()[0] for step in self.thinking_history if step.action)),
"learning_patterns": len(self.learning_patterns),
"context_memory_size": len(self.context_memory)
}
|