Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- .gitattributes +1 -0
- README.md +14 -14
- app.py +106 -77
- cleo-abram.mp4 +3 -0
- requirements.txt +7 -7
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
cleo-abram.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Accent Classifier
|
| 3 |
-
emoji: π
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.30.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: other
|
| 11 |
-
short_description: Detects & classifies accents of English speakers.
|
| 12 |
-
---
|
| 13 |
-
|
| 14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Accent Classifier
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.30.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: other
|
| 11 |
+
short_description: Detects & classifies accents of English speakers.
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,77 +1,106 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import tempfile
|
| 4 |
-
import os
|
| 5 |
-
import requests
|
| 6 |
-
from moviepy import VideoFileClip
|
| 7 |
-
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, Wav2Vec2Processor, Wav2Vec2Model
|
| 8 |
-
import torchaudio
|
| 9 |
-
|
| 10 |
-
# Load Whisper model to confirm English
|
| 11 |
-
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
|
| 12 |
-
|
| 13 |
-
# Placeholder accent classifier (replace with real one or your own logic)
|
| 14 |
-
def classify_accent(audio_tensor, sample_rate):
|
| 15 |
-
# In a real case, you'd use a fine-tuned model or wav2vec2 embeddings
|
| 16 |
-
# We'll fake a classification here for demonstration
|
| 17 |
-
return {
|
| 18 |
-
"accent": "American",
|
| 19 |
-
"confidence": 87.2,
|
| 20 |
-
"summary": "The speaker uses rhotic pronunciation and North American intonation."
|
| 21 |
-
}
|
| 22 |
-
|
| 23 |
-
def download_video(url):
|
| 24 |
-
video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 25 |
-
response = requests.get(url, stream=True)
|
| 26 |
-
with open(video_path, "wb") as f:
|
| 27 |
-
for chunk in response.iter_content(chunk_size=1024*1024):
|
| 28 |
-
if chunk:
|
| 29 |
-
f.write(chunk)
|
| 30 |
-
return video_path
|
| 31 |
-
|
| 32 |
-
def extract_audio(video_path):
|
| 33 |
-
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
|
| 34 |
-
clip = VideoFileClip(video_path)
|
| 35 |
-
clip.audio.write_audiofile(audio_path, codec='pcm_s16le')
|
| 36 |
-
return audio_path
|
| 37 |
-
|
| 38 |
-
def transcribe(audio_path):
|
| 39 |
-
result = whisper_pipe(audio_path)
|
| 40 |
-
return result['text']
|
| 41 |
-
|
| 42 |
-
def analyze_accent(
|
| 43 |
-
try:
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
import requests
|
| 6 |
+
from moviepy import VideoFileClip
|
| 7 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, Wav2Vec2Processor, Wav2Vec2Model
|
| 8 |
+
import torchaudio
|
| 9 |
+
|
| 10 |
+
# Load Whisper model to confirm English
|
| 11 |
+
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
|
| 12 |
+
|
| 13 |
+
# Placeholder accent classifier (replace with real one or your own logic)
|
| 14 |
+
def classify_accent(audio_tensor, sample_rate):
|
| 15 |
+
# In a real case, you'd use a fine-tuned model or wav2vec2 embeddings
|
| 16 |
+
# We'll fake a classification here for demonstration
|
| 17 |
+
return {
|
| 18 |
+
"accent": "American",
|
| 19 |
+
"confidence": 87.2,
|
| 20 |
+
"summary": "The speaker uses rhotic pronunciation and North American intonation."
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
def download_video(url):
|
| 24 |
+
video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 25 |
+
response = requests.get(url, stream=True)
|
| 26 |
+
with open(video_path, "wb") as f:
|
| 27 |
+
for chunk in response.iter_content(chunk_size=1024*1024):
|
| 28 |
+
if chunk:
|
| 29 |
+
f.write(chunk)
|
| 30 |
+
return video_path
|
| 31 |
+
|
| 32 |
+
def extract_audio(video_path):
|
| 33 |
+
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
|
| 34 |
+
clip = VideoFileClip(video_path)
|
| 35 |
+
clip.audio.write_audiofile(audio_path, codec='pcm_s16le')
|
| 36 |
+
return audio_path
|
| 37 |
+
|
| 38 |
+
def transcribe(audio_path):
|
| 39 |
+
result = whisper_pipe(audio_path)
|
| 40 |
+
return result['text']
|
| 41 |
+
|
| 42 |
+
def analyze_accent(url_or_file):
|
| 43 |
+
try:
|
| 44 |
+
if isinstance(url_or_file, str):
|
| 45 |
+
video_path = download_video(url_or_file)
|
| 46 |
+
else:
|
| 47 |
+
video_path = url_or_file.name # local file upload
|
| 48 |
+
|
| 49 |
+
audio_path = extract_audio(video_path)
|
| 50 |
+
|
| 51 |
+
# Load audio with torchaudio
|
| 52 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
| 53 |
+
|
| 54 |
+
# Transcription (to verify English)
|
| 55 |
+
transcript = transcribe(audio_path)
|
| 56 |
+
if len(transcript.strip()) < 3:
|
| 57 |
+
return "Could not understand speech. Please try another video."
|
| 58 |
+
|
| 59 |
+
# Accent classification
|
| 60 |
+
result = classify_accent(waveform, sample_rate)
|
| 61 |
+
|
| 62 |
+
output = f"**Accent**: {result['accent']}\n\n"
|
| 63 |
+
output += f"**Confidence**: {result['confidence']}%\n\n"
|
| 64 |
+
output += f"**Explanation**: {result['summary']}\n\n"
|
| 65 |
+
output += f"**Transcript** (first 200 chars): {transcript[:200]}..."
|
| 66 |
+
|
| 67 |
+
# Clean up temp files
|
| 68 |
+
if isinstance(url_or_file, str):
|
| 69 |
+
os.remove(video_path)
|
| 70 |
+
os.remove(audio_path)
|
| 71 |
+
|
| 72 |
+
return output
|
| 73 |
+
except Exception as e:
|
| 74 |
+
return f"β Error: {str(e)}"
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# gr.Interface(
|
| 78 |
+
# fn=analyze_accent,
|
| 79 |
+
# inputs=gr.Textbox(label="Public Video URL (e.g. MP4)", placeholder="https://..."),
|
| 80 |
+
# outputs=gr.Markdown(label="Accent Analysis Result"),
|
| 81 |
+
# title="English Accent Classifier",
|
| 82 |
+
# description="Paste a video URL (MP4) to extract audio, transcribe speech, and classify the English accent (e.g., American, British, etc.).",
|
| 83 |
+
|
| 84 |
+
# examples=[
|
| 85 |
+
# ["https://example.com/sample.mp4"], # example URL
|
| 86 |
+
# [open("cleo-abram.mp4", "rb")] # local file example
|
| 87 |
+
# ],
|
| 88 |
+
# live=True
|
| 89 |
+
# ).launch()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
with gr.Blocks() as demo:
|
| 94 |
+
gr.Markdown("# English Accent Classifier")
|
| 95 |
+
|
| 96 |
+
with gr.Tab("From URL"):
|
| 97 |
+
url_input = gr.Textbox(label="Video URL (MP4)")
|
| 98 |
+
url_output = gr.Markdown()
|
| 99 |
+
gr.Button("Analyze").click(fn=analyze_accent, inputs=url_input, outputs=url_output)
|
| 100 |
+
|
| 101 |
+
with gr.Tab("From File"):
|
| 102 |
+
file_input = gr.File(label="Upload MP4 Video", file_types=[".mp4"])
|
| 103 |
+
file_output = gr.Markdown()
|
| 104 |
+
gr.Button("Analyze").click(fn=analyze_accent, inputs=file_input, outputs=file_output)
|
| 105 |
+
|
| 106 |
+
demo.launch()
|
cleo-abram.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a75606c3d58f1020cc2d07a7f4ade9898bb1ca2388c06d117480e529cc726c1e
|
| 3 |
+
size 4035126
|
requirements.txt
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
torch
|
| 3 |
-
transformers
|
| 4 |
-
torchaudio
|
| 5 |
-
moviepy
|
| 6 |
-
ffmpeg-python
|
| 7 |
-
requests
|
| 8 |
yt_dlp
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
torchaudio
|
| 5 |
+
moviepy
|
| 6 |
+
ffmpeg-python
|
| 7 |
+
requests
|
| 8 |
yt_dlp
|