Spaces:
Runtime error
Runtime error
| // crash the server in debug mode, otherwise send an http 500 error | |
| // auto generated files (update with ./deps.sh) | |
| using namespace httplib; | |
| using json = nlohmann::json; | |
| struct server_params | |
| { | |
| std::string hostname = "127.0.0.1"; | |
| std::string public_path = "examples/server/public"; | |
| int32_t port = 8080; | |
| int32_t read_timeout = 600; | |
| int32_t write_timeout = 600; | |
| }; | |
| // completion token output with probabilities | |
| struct completion_token_output | |
| { | |
| struct token_prob | |
| { | |
| llama_token tok; | |
| float prob; | |
| }; | |
| std::vector<token_prob> probs; | |
| llama_token tok; | |
| }; | |
| static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b) | |
| { | |
| size_t i; | |
| for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) | |
| { | |
| } | |
| return i; | |
| } | |
| enum stop_type | |
| { | |
| STOP_FULL, | |
| STOP_PARTIAL, | |
| }; | |
| static bool ends_with(const std::string &str, const std::string &suffix) | |
| { | |
| return str.size() >= suffix.size() && | |
| 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
| } | |
| static size_t find_partial_stop_string(const std::string &stop, | |
| const std::string &text) | |
| { | |
| if (!text.empty() && !stop.empty()) | |
| { | |
| const char text_last_char = text.back(); | |
| for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) | |
| { | |
| if (stop[char_index] == text_last_char) | |
| { | |
| const std::string current_partial = stop.substr(0, char_index + 1); | |
| if (ends_with(text, current_partial)) | |
| { | |
| return text.size() - char_index - 1; | |
| } | |
| } | |
| } | |
| } | |
| return std::string::npos; | |
| } | |
| template <class Iter> | |
| static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) | |
| { | |
| std::string ret; | |
| for (; begin != end; ++begin) | |
| { | |
| ret += llama_token_to_str(ctx, *begin); | |
| } | |
| return ret; | |
| } | |
| static void server_log(const char *level, const char *function, int line, | |
| const char *message, const nlohmann::ordered_json &extra) | |
| { | |
| nlohmann::ordered_json log{ | |
| {"timestamp", time(nullptr)}, | |
| {"level", level}, | |
| {"function", function}, | |
| {"line", line}, | |
| {"message", message}, | |
| }; | |
| if (!extra.empty()) | |
| { | |
| log.merge_patch(extra); | |
| } | |
| const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); | |
| fprintf(stdout, "%.*s\n", (int)str.size(), str.data()); | |
| fflush(stdout); | |
| } | |
| // format incomplete utf-8 multibyte character for output | |
| static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) | |
| { | |
| std::string out = token == -1 ? "" : llama_token_to_str(ctx, token); | |
| // if first bit is 1, meaning it's a partial character | |
| if (out.size() > 0 && (out[0] & 0x80) == 0x80) | |
| { | |
| std::stringstream ss; | |
| ss << std::hex << (out[0] & 0xff); | |
| std::string res(ss.str()); | |
| out = "byte: \\x" + res; | |
| } | |
| return out; | |
| } | |
| // convert a vector of completion_token_output to json | |
| static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs) | |
| { | |
| json out = json::array(); | |
| for (const auto &prob : probs) | |
| { | |
| json probs_for_token = json::array(); | |
| for (const auto &p : prob.probs) | |
| { | |
| std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); | |
| probs_for_token.push_back(json{ | |
| {"tok_str", tok_str}, | |
| {"prob", p.prob}, | |
| }); | |
| } | |
| std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); | |
| out.push_back(json{ | |
| {"content", tok_str}, | |
| {"probs", probs_for_token}, | |
| }); | |
| } | |
| return out; | |
| } | |
| static bool server_verbose = false; | |
| struct llama_server_context | |
| { | |
| bool stream = false; | |
| bool has_next_token = false; | |
| std::string generated_text; | |
| std::vector<completion_token_output> generated_token_probs; | |
| size_t num_prompt_tokens = 0; | |
| size_t num_tokens_predicted = 0; | |
| size_t n_past = 0; | |
| size_t n_remain = 0; | |
| std::vector<llama_token> embd; | |
| std::vector<llama_token> last_n_tokens; | |
| llama_model *model = nullptr; | |
| llama_context *ctx = nullptr; | |
| gpt_params params; | |
| bool truncated = false; | |
| bool stopped_eos = false; | |
| bool stopped_word = false; | |
| bool stopped_limit = false; | |
| std::string stopping_word; | |
| int32_t multibyte_pending = 0; | |
| std::mutex mutex; | |
| std::unique_lock<std::mutex> lock() | |
| { | |
| return std::unique_lock<std::mutex>(mutex); | |
| } | |
| ~llama_server_context() | |
| { | |
| if (ctx) | |
| { | |
| llama_free(ctx); | |
| ctx = nullptr; | |
| } | |
| if (model) | |
| { | |
| llama_free_model(model); | |
| model = nullptr; | |
| } | |
| } | |
| void rewind() | |
| { | |
| params.antiprompt.clear(); | |
| num_prompt_tokens = 0; | |
| num_tokens_predicted = 0; | |
| generated_text = ""; | |
| generated_text.reserve(params.n_ctx); | |
| generated_token_probs.clear(); | |
| truncated = false; | |
| stopped_eos = false; | |
| stopped_word = false; | |
| stopped_limit = false; | |
| stopping_word = ""; | |
| multibyte_pending = 0; | |
| n_remain = 0; | |
| n_past = 0; | |
| } | |
| bool loadModel(const gpt_params ¶ms_) | |
| { | |
| params = params_; | |
| std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
| if (model == nullptr) | |
| { | |
| LOG_ERROR("unable to load model", {{"model", params_.model}}); | |
| return false; | |
| } | |
| last_n_tokens.resize(params.n_ctx); | |
| std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); | |
| return true; | |
| } | |
| void loadPrompt() | |
| { | |
| params.prompt.insert(0, 1, ' '); // always add a first space | |
| std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); | |
| num_prompt_tokens = prompt_tokens.size(); | |
| if (params.n_keep < 0) | |
| { | |
| params.n_keep = (int)num_prompt_tokens; | |
| } | |
| params.n_keep = std::min(params.n_ctx - 4, params.n_keep); | |
| // if input prompt is too big, truncate like normal | |
| if (num_prompt_tokens >= (size_t)params.n_ctx) | |
| { | |
| const int n_left = (params.n_ctx - params.n_keep) / 2; | |
| std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); | |
| const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; | |
| new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); | |
| std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); | |
| LOG_VERBOSE("input truncated", { | |
| {"n_ctx", params.n_ctx}, | |
| {"n_keep", params.n_keep}, | |
| {"n_left", n_left}, | |
| {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, | |
| }); | |
| truncated = true; | |
| prompt_tokens = new_tokens; | |
| } | |
| else | |
| { | |
| const size_t ps = num_prompt_tokens; | |
| std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); | |
| std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); | |
| } | |
| // compare the evaluated prompt with the new prompt | |
| n_past = common_part(embd, prompt_tokens); | |
| embd = prompt_tokens; | |
| if (n_past == num_prompt_tokens) | |
| { | |
| // we have to evaluate at least 1 token to generate logits. | |
| n_past--; | |
| } | |
| LOG_VERBOSE("prompt ingested", { | |
| {"n_past", n_past}, | |
| {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)}, | |
| {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, | |
| }); | |
| has_next_token = true; | |
| } | |
| void beginCompletion() | |
| { | |
| // number of tokens to keep when resetting context | |
| n_remain = params.n_predict; | |
| llama_set_rng_seed(ctx, params.seed); | |
| } | |
| completion_token_output nextToken() | |
| { | |
| completion_token_output result; | |
| result.tok = -1; | |
| if (embd.size() >= (size_t)params.n_ctx) | |
| { | |
| // Reset context | |
| const int n_left = (params.n_ctx - params.n_keep) / 2; | |
| std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep); | |
| new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end()); | |
| embd = new_tokens; | |
| n_past = params.n_keep; | |
| truncated = true; | |
| LOG_VERBOSE("input truncated", { | |
| {"n_ctx", params.n_ctx}, | |
| {"n_keep", params.n_keep}, | |
| {"n_left", n_left}, | |
| {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, | |
| }); | |
| } | |
| while (n_past < embd.size()) | |
| { | |
| int n_eval = (int)embd.size() - n_past; | |
| if (n_eval > params.n_batch) | |
| { | |
| n_eval = params.n_batch; | |
| } | |
| if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) | |
| { | |
| LOG_ERROR("failed to eval", { | |
| {"n_eval", n_eval}, | |
| {"n_past", n_past}, | |
| {"n_threads", params.n_threads}, | |
| {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, | |
| }); | |
| has_next_token = false; | |
| return result; | |
| } | |
| n_past += n_eval; | |
| } | |
| if (params.n_predict == 0) | |
| { | |
| has_next_token = false; | |
| result.tok = llama_token_eos(); | |
| return result; | |
| } | |
| // out of user input, sample next token | |
| const float temp = params.temp; | |
| const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; | |
| const float top_p = params.top_p; | |
| const float tfs_z = params.tfs_z; | |
| const float typical_p = params.typical_p; | |
| const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; | |
| const float repeat_penalty = params.repeat_penalty; | |
| const float alpha_presence = params.presence_penalty; | |
| const float alpha_frequency = params.frequency_penalty; | |
| const int mirostat = params.mirostat; | |
| const float mirostat_tau = params.mirostat_tau; | |
| const float mirostat_eta = params.mirostat_eta; | |
| const bool penalize_nl = params.penalize_nl; | |
| const int32_t n_probs = params.n_probs; | |
| { | |
| auto *logits = llama_get_logits(ctx); | |
| auto n_vocab = llama_n_vocab(ctx); | |
| // Apply params.logit_bias map | |
| for (const auto &it : params.logit_bias) | |
| { | |
| logits[it.first] += it.second; | |
| } | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) | |
| { | |
| candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false}; | |
| // Apply penalties | |
| float nl_logit = logits[llama_token_nl()]; | |
| auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); | |
| llama_sample_repetition_penalty(ctx, &candidates_p, | |
| last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
| last_n_repeat, repeat_penalty); | |
| llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, | |
| last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
| last_n_repeat, alpha_frequency, alpha_presence); | |
| if (!penalize_nl) | |
| { | |
| logits[llama_token_nl()] = nl_logit; | |
| } | |
| if (temp <= 0) | |
| { | |
| // Greedy sampling | |
| result.tok = llama_sample_token_greedy(ctx, &candidates_p); | |
| if (n_probs > 0) | |
| { | |
| llama_sample_softmax(ctx, &candidates_p); | |
| } | |
| } | |
| else | |
| { | |
| if (mirostat == 1) | |
| { | |
| static float mirostat_mu = 2.0f * mirostat_tau; | |
| const int mirostat_m = 100; | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); | |
| } | |
| else if (mirostat == 2) | |
| { | |
| static float mirostat_mu = 2.0f * mirostat_tau; | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); | |
| } | |
| else | |
| { | |
| // Temperature sampling | |
| size_t min_keep = std::max(1, n_probs); | |
| llama_sample_top_k(ctx, &candidates_p, top_k, min_keep); | |
| llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep); | |
| llama_sample_typical(ctx, &candidates_p, typical_p, min_keep); | |
| llama_sample_top_p(ctx, &candidates_p, top_p, min_keep); | |
| llama_sample_temperature(ctx, &candidates_p, temp); | |
| result.tok = llama_sample_token(ctx, &candidates_p); | |
| } | |
| } | |
| for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i) | |
| { | |
| result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p}); | |
| } | |
| last_n_tokens.erase(last_n_tokens.begin()); | |
| last_n_tokens.push_back(result.tok); | |
| num_tokens_predicted++; | |
| } | |
| // add it to the context | |
| embd.push_back(result.tok); | |
| // decrement remaining sampling budget | |
| --n_remain; | |
| if (!embd.empty() && embd.back() == llama_token_eos()) | |
| { | |
| // stopping_word = llama_token_to_str(ctx, embd.back()); | |
| has_next_token = false; | |
| stopped_eos = true; | |
| LOG_VERBOSE("eos token found", {}); | |
| return result; | |
| } | |
| has_next_token = params.n_predict == -1 || n_remain != 0; | |
| return result; | |
| } | |
| size_t findStoppingStrings(const std::string &text, const size_t last_token_size, | |
| const stop_type type) | |
| { | |
| size_t stop_pos = std::string::npos; | |
| for (const std::string &word : params.antiprompt) | |
| { | |
| size_t pos; | |
| if (type == STOP_FULL) | |
| { | |
| const size_t tmp = word.size() + last_token_size; | |
| const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; | |
| pos = text.find(word, from_pos); | |
| } | |
| else | |
| { | |
| pos = find_partial_stop_string(word, text); | |
| } | |
| if (pos != std::string::npos && | |
| (stop_pos == std::string::npos || pos < stop_pos)) | |
| { | |
| if (type == STOP_FULL) | |
| { | |
| stopping_word = word; | |
| stopped_word = true; | |
| has_next_token = false; | |
| } | |
| stop_pos = pos; | |
| } | |
| } | |
| return stop_pos; | |
| } | |
| completion_token_output doCompletion() | |
| { | |
| const completion_token_output token_with_probs = nextToken(); | |
| const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok); | |
| generated_text += token_text; | |
| if (params.n_probs > 0) | |
| { | |
| generated_token_probs.push_back(token_with_probs); | |
| } | |
| if (multibyte_pending > 0) | |
| { | |
| multibyte_pending -= token_text.size(); | |
| } | |
| else if (token_text.size() == 1) | |
| { | |
| const char c = token_text[0]; | |
| // 2-byte characters: 110xxxxx 10xxxxxx | |
| if ((c & 0xE0) == 0xC0) | |
| { | |
| multibyte_pending = 1; | |
| // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx | |
| } | |
| else if ((c & 0xF0) == 0xE0) | |
| { | |
| multibyte_pending = 2; | |
| // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | |
| } | |
| else if ((c & 0xF8) == 0xF0) | |
| { | |
| multibyte_pending = 3; | |
| } | |
| else | |
| { | |
| multibyte_pending = 0; | |
| } | |
| } | |
| if (multibyte_pending > 0 && !has_next_token) | |
| { | |
| has_next_token = true; | |
| n_remain++; | |
| } | |
| if (!has_next_token && n_remain == 0) | |
| { | |
| stopped_limit = true; | |
| } | |
| LOG_VERBOSE("next token", { | |
| {"token", token_with_probs.tok}, | |
| {"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)}, | |
| {"has_next_token", has_next_token}, | |
| {"n_remain", n_remain}, | |
| {"num_tokens_predicted", num_tokens_predicted}, | |
| {"stopped_eos", stopped_eos}, | |
| {"stopped_word", stopped_word}, | |
| {"stopped_limit", stopped_limit}, | |
| {"stopping_word", stopping_word}, | |
| }); | |
| return token_with_probs; | |
| } | |
| std::vector<float> getEmbedding() | |
| { | |
| static const int n_embd = llama_n_embd(ctx); | |
| if (!params.embedding) | |
| { | |
| LOG_WARNING("embedding disabled", { | |
| {"params.embedding", params.embedding}, | |
| }); | |
| return std::vector<float>(n_embd, 0.0f); | |
| } | |
| const float *data = llama_get_embeddings(ctx); | |
| std::vector<float> embedding(data, data + n_embd); | |
| return embedding; | |
| } | |
| }; | |
| static void server_print_usage(const char *argv0, const gpt_params ¶ms, | |
| const server_params &sparams) | |
| { | |
| fprintf(stderr, "usage: %s [options]\n", argv0); | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "options:\n"); | |
| fprintf(stderr, " -h, --help show this help message and exit\n"); | |
| fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); | |
| fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | |
| fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); | |
| fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); | |
| fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); | |
| fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n"); | |
| if (llama_mlock_supported()) | |
| { | |
| fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); | |
| } | |
| if (llama_mmap_supported()) | |
| { | |
| fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); | |
| } | |
| fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); | |
| fprintf(stderr, " number of layers to store in VRAM\n"); | |
| fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); | |
| fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
| fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
| fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); | |
| fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n"); | |
| fprintf(stderr, " -m FNAME, --model FNAME\n"); | |
| fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); | |
| fprintf(stderr, " -a ALIAS, --alias ALIAS\n"); | |
| fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n"); | |
| fprintf(stderr, " --lora FNAME apply LoRA adapter\n"); | |
| fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); | |
| fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); | |
| fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port); | |
| fprintf(stderr, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str()); | |
| fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); | |
| fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); | |
| fprintf(stderr, "\n"); | |
| } | |
| static void server_params_parse(int argc, char **argv, server_params &sparams, | |
| gpt_params ¶ms) | |
| { | |
| gpt_params default_params; | |
| server_params default_sparams; | |
| std::string arg; | |
| bool invalid_param = false; | |
| for (int i = 1; i < argc; i++) | |
| { | |
| arg = argv[i]; | |
| if (arg == "--port") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.port = std::stoi(argv[i]); | |
| } | |
| else if (arg == "--host") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.hostname = argv[i]; | |
| } | |
| else if (arg == "--path") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.public_path = argv[i]; | |
| } | |
| else if (arg == "--timeout" || arg == "-to") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| sparams.read_timeout = std::stoi(argv[i]); | |
| sparams.write_timeout = std::stoi(argv[i]); | |
| } | |
| else if (arg == "-m" || arg == "--model") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.model = argv[i]; | |
| } | |
| else if (arg == "-a" || arg == "--alias") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.model_alias = argv[i]; | |
| } | |
| else if (arg == "-h" || arg == "--help") | |
| { | |
| server_print_usage(argv[0], default_params, default_sparams); | |
| exit(0); | |
| } | |
| else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_ctx = std::stoi(argv[i]); | |
| } | |
| else if (arg == "--memory-f32" || arg == "--memory_f32") | |
| { | |
| params.memory_f16 = false; | |
| } | |
| else if (arg == "--threads" || arg == "-t") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_threads = std::stoi(argv[i]); | |
| } | |
| else if (arg == "-b" || arg == "--batch-size") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_batch = std::stoi(argv[i]); | |
| params.n_batch = std::min(512, params.n_batch); | |
| } | |
| else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.n_gpu_layers = std::stoi(argv[i]); | |
| LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " | |
| "See main README.md for information on enabling GPU BLAS support", | |
| {{"n_gpu_layers", params.n_gpu_layers}}); | |
| } | |
| else if (arg == "--tensor-split" || arg == "-ts") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| std::string arg_next = argv[i]; | |
| // split string by , and / | |
| const std::regex regex{R"([,/]+)"}; | |
| std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; | |
| std::vector<std::string> split_arg{it, {}}; | |
| GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); | |
| for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) | |
| { | |
| if (i_device < split_arg.size()) | |
| { | |
| params.tensor_split[i_device] = std::stof(split_arg[i_device]); | |
| } | |
| else | |
| { | |
| params.tensor_split[i_device] = 0.0f; | |
| } | |
| } | |
| LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {}); | |
| } | |
| else if (arg == "--low-vram" || arg == "-lv") | |
| { | |
| params.low_vram = true; | |
| fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); | |
| } | |
| else if (arg == "--main-gpu" || arg == "-mg") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.main_gpu = std::stoi(argv[i]); | |
| LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); | |
| } | |
| else if (arg == "--lora") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.lora_adapter = argv[i]; | |
| } | |
| else if (arg == "--lora-base") | |
| { | |
| if (++i >= argc) | |
| { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.lora_base = argv[i]; | |
| } | |
| else if (arg == "-v" || arg == "--verbose") | |
| { | |
| LOG_WARNING("server.cpp is not built with verbose logging.", {}); | |
| server_verbose = true; | |
| } | |
| else if (arg == "--mlock") | |
| { | |
| params.use_mlock = true; | |
| } | |
| else if (arg == "--no-mmap") | |
| { | |
| params.use_mmap = false; | |
| } | |
| else if (arg == "--embedding") | |
| { | |
| params.embedding = true; | |
| } | |
| else | |
| { | |
| fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
| server_print_usage(argv[0], default_params, default_sparams); | |
| exit(1); | |
| } | |
| } | |
| if (invalid_param) | |
| { | |
| fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
| server_print_usage(argv[0], default_params, default_sparams); | |
| exit(1); | |
| } | |
| } | |
| static json format_generation_settings(llama_server_context &llama) | |
| { | |
| const auto eos_bias = llama.params.logit_bias.find(llama_token_eos()); | |
| const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && | |
| eos_bias->second < 0.0f && std::isinf(eos_bias->second); | |
| return json{ | |
| {"n_ctx", llama.params.n_ctx}, | |
| {"model", llama.params.model_alias}, | |
| {"seed", llama.params.seed}, | |
| {"temp", llama.params.temp}, | |
| {"top_k", llama.params.top_k}, | |
| {"top_p", llama.params.top_p}, | |
| {"tfs_z", llama.params.tfs_z}, | |
| {"typical_p", llama.params.typical_p}, | |
| {"repeat_last_n", llama.params.repeat_last_n}, | |
| {"repeat_penalty", llama.params.repeat_penalty}, | |
| {"presence_penalty", llama.params.presence_penalty}, | |
| {"frequency_penalty", llama.params.frequency_penalty}, | |
| {"mirostat", llama.params.mirostat}, | |
| {"mirostat_tau", llama.params.mirostat_tau}, | |
| {"mirostat_eta", llama.params.mirostat_eta}, | |
| {"penalize_nl", llama.params.penalize_nl}, | |
| {"stop", llama.params.antiprompt}, | |
| {"n_predict", llama.params.n_predict}, | |
| {"n_keep", llama.params.n_keep}, | |
| {"ignore_eos", ignore_eos}, | |
| {"stream", llama.stream}, | |
| {"logit_bias", llama.params.logit_bias}, | |
| {"n_probs", llama.params.n_probs}, | |
| }; | |
| } | |
| static json format_embedding_response(llama_server_context &llama) | |
| { | |
| return json{ | |
| {"embedding", llama.getEmbedding()}, | |
| }; | |
| } | |
| static json format_timings(llama_server_context &llama) | |
| { | |
| const auto timings = llama_get_timings(llama.ctx); | |
| assert(timings.n_eval == llama.num_tokens_predicted); | |
| return json{ | |
| {"prompt_n", timings.n_eval}, | |
| {"prompt_ms", timings.t_p_eval_ms}, | |
| {"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval}, | |
| {"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval}, | |
| {"predicted_n", timings.n_eval}, | |
| {"predicted_ms", timings.t_eval_ms}, | |
| {"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval}, | |
| {"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval}, | |
| }; | |
| } | |
| static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs) | |
| { | |
| json res = json{ | |
| {"content", content}, | |
| {"stop", true}, | |
| {"model", llama.params.model_alias}, | |
| {"tokens_predicted", llama.num_tokens_predicted}, | |
| {"tokens_evaluated", llama.num_prompt_tokens}, | |
| {"generation_settings", format_generation_settings(llama)}, | |
| {"prompt", llama.params.prompt}, | |
| {"truncated", llama.truncated}, | |
| {"stopped_eos", llama.stopped_eos}, | |
| {"stopped_word", llama.stopped_word}, | |
| {"stopped_limit", llama.stopped_limit}, | |
| {"stopping_word", llama.stopping_word}, | |
| {"tokens_cached", llama.n_past}, | |
| {"tokens_predicted", llama.num_tokens_predicted}, | |
| {"timings", format_timings(llama)}, | |
| }; | |
| if (llama.params.n_probs > 0) | |
| { | |
| res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); | |
| } | |
| return res; | |
| } | |
| static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs) | |
| { | |
| json res = json{ | |
| {"content", content}, | |
| {"stop", false}, | |
| }; | |
| if (llama.params.n_probs > 0) | |
| { | |
| res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); | |
| } | |
| return res; | |
| } | |
| static json format_tokenizer_response(const std::vector<llama_token> &tokens) | |
| { | |
| return json{ | |
| {"tokens", tokens}}; | |
| } | |
| static void parse_options_completion(const json &body, llama_server_context &llama) | |
| { | |
| gpt_params default_params; | |
| llama.stream = body.value("stream", false); | |
| llama.params.n_predict = body.value("n_predict", default_params.n_predict); | |
| llama.params.top_k = body.value("top_k", default_params.top_k); | |
| llama.params.top_p = body.value("top_p", default_params.top_p); | |
| llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z); | |
| llama.params.typical_p = body.value("typical_p", default_params.typical_p); | |
| llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n); | |
| llama.params.temp = body.value("temperature", default_params.temp); | |
| llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty); | |
| llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty); | |
| llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty); | |
| llama.params.mirostat = body.value("mirostat", default_params.mirostat); | |
| llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau); | |
| llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta); | |
| llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl); | |
| llama.params.n_keep = body.value("n_keep", default_params.n_keep); | |
| llama.params.seed = body.value("seed", default_params.seed); | |
| llama.params.prompt = body.value("prompt", default_params.prompt); | |
| llama.params.n_probs = body.value("n_probs", default_params.n_probs); | |
| llama.params.logit_bias.clear(); | |
| if (body.value("ignore_eos", false)) | |
| { | |
| llama.params.logit_bias[llama_token_eos()] = -INFINITY; | |
| } | |
| const auto &logit_bias = body.find("logit_bias"); | |
| if (logit_bias != body.end() && logit_bias->is_array()) | |
| { | |
| const int n_vocab = llama_n_vocab(llama.ctx); | |
| for (const auto &el : *logit_bias) | |
| { | |
| if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) | |
| { | |
| llama_token tok = el[0].get<llama_token>(); | |
| if (tok >= 0 && tok < n_vocab) | |
| { | |
| if (el[1].is_number()) | |
| { | |
| llama.params.logit_bias[tok] = el[1].get<float>(); | |
| } | |
| else if (el[1].is_boolean() && !el[1].get<bool>()) | |
| { | |
| llama.params.logit_bias[tok] = -INFINITY; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| llama.params.antiprompt.clear(); | |
| const auto &stop = body.find("stop"); | |
| if (stop != body.end() && stop->is_array()) | |
| { | |
| for (const auto &word : *stop) | |
| { | |
| if (!word.empty()) | |
| { | |
| llama.params.antiprompt.push_back(word); | |
| } | |
| } | |
| } | |
| LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); | |
| } | |
| static void log_server_request(const Request &req, const Response &res) | |
| { | |
| LOG_INFO("request", { | |
| {"remote_addr", req.remote_addr}, | |
| {"remote_port", req.remote_port}, | |
| {"status", res.status}, | |
| {"method", req.method}, | |
| {"path", req.path}, | |
| {"params", req.params}, | |
| }); | |
| LOG_VERBOSE("request", { | |
| {"request", req.body}, | |
| {"response", res.body}, | |
| }); | |
| } | |
| int main(int argc, char **argv) | |
| { | |
| // own arguments required by this example | |
| gpt_params params; | |
| server_params sparams; | |
| // struct that contains llama context and inference | |
| llama_server_context llama; | |
| server_params_parse(argc, argv, sparams, params); | |
| if (params.model_alias == "unknown") | |
| { | |
| params.model_alias = params.model; | |
| } | |
| llama_backend_init(params.numa); | |
| LOG_INFO("build info", {{"build", BUILD_NUMBER}, | |
| {"commit", BUILD_COMMIT}}); | |
| LOG_INFO("system info", { | |
| {"n_threads", params.n_threads}, | |
| {"total_threads", std::thread::hardware_concurrency()}, | |
| {"system_info", llama_print_system_info()}, | |
| }); | |
| // load the model | |
| if (!llama.loadModel(params)) | |
| { | |
| return 1; | |
| } | |
| Server svr; | |
| svr.set_default_headers({{"Server", "llama.cpp"}, | |
| {"Access-Control-Allow-Origin", "*"}, | |
| {"Access-Control-Allow-Headers", "content-type"}}); | |
| // this is only called if no index.html is found in the public --path | |
| svr.Get("/", [](const Request &, Response &res) | |
| { | |
| res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html"); | |
| return false; }); | |
| // this is only called if no index.js is found in the public --path | |
| svr.Get("/index.js", [](const Request &, Response &res) | |
| { | |
| res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript"); | |
| return false; }); | |
| // this is only called if no index.html is found in the public --path | |
| svr.Get("/completion.js", [](const Request &, Response &res) | |
| { | |
| res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript"); | |
| return false; }); | |
| svr.Post("/completion", [&llama](const Request &req, Response &res) | |
| { | |
| auto lock = llama.lock(); | |
| llama.rewind(); | |
| llama_reset_timings(llama.ctx); | |
| parse_options_completion(json::parse(req.body), llama); | |
| llama.loadPrompt(); | |
| llama.beginCompletion(); | |
| if (!llama.stream) { | |
| size_t stop_pos = std::string::npos; | |
| while (llama.has_next_token) { | |
| const completion_token_output token_with_probs = llama.doCompletion(); | |
| const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); | |
| stop_pos = llama.findStoppingStrings(llama.generated_text, | |
| token_text.size(), STOP_FULL); | |
| } | |
| if (stop_pos == std::string::npos) { | |
| stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); | |
| } | |
| if (stop_pos != std::string::npos) { | |
| llama.generated_text.erase(llama.generated_text.begin() + stop_pos, | |
| llama.generated_text.end()); | |
| } | |
| const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs); | |
| llama_print_timings(llama.ctx); | |
| res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), | |
| "application/json"); | |
| } else { | |
| const auto chunked_content_provider = [&](size_t, DataSink & sink) { | |
| size_t sent_count = 0; | |
| size_t sent_token_probs_index = 0; | |
| while (llama.has_next_token) { | |
| const completion_token_output token_with_probs = llama.doCompletion(); | |
| const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); | |
| if (llama.multibyte_pending > 0) { | |
| continue; | |
| } | |
| size_t pos = std::min(sent_count, llama.generated_text.size()); | |
| const std::string str_test = llama.generated_text.substr(pos); | |
| size_t stop_pos = | |
| llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); | |
| if (stop_pos != std::string::npos) { | |
| llama.generated_text.erase( | |
| llama.generated_text.begin() + pos + stop_pos, | |
| llama.generated_text.end()); | |
| pos = std::min(sent_count, llama.generated_text.size()); | |
| } else { | |
| stop_pos = llama.findStoppingStrings(str_test, token_text.size(), | |
| STOP_PARTIAL); | |
| } | |
| const std::string to_send = llama.generated_text.substr(pos, stop_pos); | |
| sent_count += to_send.size(); | |
| std::vector<completion_token_output> probs_output = {}; | |
| if (llama.params.n_probs > 0) { | |
| const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false); | |
| size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); | |
| size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); | |
| if (probs_pos < probs_stop_pos) { | |
| probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos); | |
| } | |
| sent_token_probs_index = probs_stop_pos; | |
| } | |
| const json data = llama.has_next_token | |
| ? format_partial_response(llama, to_send, probs_output) | |
| // Generation is done, send extra information. | |
| : format_final_response(llama, to_send, llama.generated_token_probs); | |
| const std::string str = | |
| "data: " + | |
| data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
| "\n\n"; | |
| LOG_VERBOSE("data stream", { | |
| { "to_send", str } | |
| }); | |
| if (!sink.write(str.data(), str.size())) { | |
| LOG_VERBOSE("stream closed", {}); | |
| llama_print_timings(llama.ctx); | |
| return false; | |
| } | |
| } | |
| llama_print_timings(llama.ctx); | |
| sink.done(); | |
| return true; | |
| }; | |
| res.set_chunked_content_provider("text/event-stream", chunked_content_provider); | |
| } }); | |
| svr.Get("/model.json", [&llama](const Request &, Response &res) | |
| { | |
| const json data = format_generation_settings(llama); | |
| return res.set_content(data.dump(), "application/json"); }); | |
| svr.Options(R"(/.*)", [](const Request &, Response &res) | |
| { return res.set_content("", "application/json"); }); | |
| svr.Post("/tokenize", [&llama](const Request &req, Response &res) | |
| { | |
| auto lock = llama.lock(); | |
| const json body = json::parse(req.body); | |
| const std::string content = body.value("content", ""); | |
| const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false); | |
| const json data = format_tokenizer_response(tokens); | |
| return res.set_content(data.dump(), "application/json"); }); | |
| svr.Post("/embedding", [&llama](const Request &req, Response &res) | |
| { | |
| auto lock = llama.lock(); | |
| const json body = json::parse(req.body); | |
| llama.rewind(); | |
| llama_reset_timings(llama.ctx); | |
| llama.params.prompt = body.value("content", ""); | |
| llama.params.n_predict = 0; | |
| llama.loadPrompt(); | |
| llama.beginCompletion(); | |
| llama.doCompletion(); | |
| const json data = format_embedding_response(llama); | |
| return res.set_content(data.dump(), "application/json"); }); | |
| svr.set_logger(log_server_request); | |
| svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep) | |
| { | |
| const auto * fmt = "500 Internal Server Error\n%s"; | |
| char buf[BUFSIZ]; | |
| try { | |
| std::rethrow_exception(std::move(ep)); | |
| } catch (std::exception & e) { | |
| snprintf(buf, sizeof(buf), fmt, e.what()); | |
| } catch (...) { | |
| snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); | |
| } | |
| res.set_content(buf, "text/plain"); | |
| res.status = 500; }); | |
| svr.set_error_handler([](const Request &, Response &res) | |
| { | |
| res.set_content("File Not Found", "text/plain"); | |
| res.status = 404; }); | |
| // set timeouts and change hostname and port | |
| svr.set_read_timeout(sparams.read_timeout); | |
| svr.set_write_timeout(sparams.write_timeout); | |
| if (!svr.bind_to_port(sparams.hostname, sparams.port)) | |
| { | |
| fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port); | |
| return 1; | |
| } | |
| // Set the base directory for serving static files | |
| svr.set_base_dir(sparams.public_path); | |
| // to make it ctrl+clickable: | |
| fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port); | |
| LOG_INFO("HTTP server listening", { | |
| {"hostname", sparams.hostname}, | |
| {"port", sparams.port}, | |
| }); | |
| if (!svr.listen_after_bind()) | |
| { | |
| return 1; | |
| } | |
| llama_backend_free(); | |
| return 0; | |
| } | |