Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from peft import AutoPeftModelForCausalLM | |
| from transformers import AutoTokenizer, TextIteratorStreamer | |
| import torch | |
| from threading import Thread | |
| from typing import Generator | |
| # Load the model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("./lora_model") | |
| model = AutoPeftModelForCausalLM.from_pretrained("./lora_model", device_map=0, torch_dtype="auto") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ) -> Generator[str, None, None]: | |
| torch.cuda.empty_cache() | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| convo_string = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True) | |
| assert isinstance(convo_string, str) | |
| # Tokenize the conversation | |
| convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) | |
| input_ids = torch.tensor(convo_tokens, dtype=torch.long) | |
| attention_mask = torch.ones_like(input_ids) | |
| # Move to GPU | |
| input_ids = input_ids.unsqueeze(0).to("cuda") | |
| attention_mask = attention_mask.unsqueeze(0).to("cuda") | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| max_new_tokens=max_tokens, | |
| do_sample=True, | |
| suppress_tokens=None, | |
| use_cache=True, | |
| temperature=temperature, | |
| top_k=None, | |
| top_p=top_p, | |
| streamer=streamer, | |
| ) | |
| if temperature == 0: | |
| generate_kwargs["do_sample"] = False | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = ["score_7_up,"] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful image generation prompt writing AI. You write image generation prompts based on user requests. The prompt you write should be 150 words or longer.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.9, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| examples=[ | |
| ["Please write a random prompt."], | |
| ["I'd like an image based on the tags: black and white, two women, gym, minimalist design, exposed beams, kneeling, holding head, casual wear."], | |
| ["Can you create an image of a woman hiking and resting on a rock in a beautiful forest with mountains?"], | |
| ["can u make a creepy hallway pic, like something out of a weird dream, with shadows and a mysterious figure at the end? maybe some reds and blacks, make it look kinda eerie and otherworldly pls"], | |
| ["Beach sunset with silhouettes on rocks and birds flying"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |