import gradio as gr #Web interface from transformers import AutoModelForCausalLM, AutoTokenizer #For loading the model and making the input into tokens model_name="Salesforce/codegen-350M-multi" #Initialize the tokenizer and model tokenizer=AutoTokenizer.from_pretrained(model_name) model=AutoModelForCausalLM.from_pretrained(model_name) def generate_code(prompt, max_length=100, temperature=0.7, top_p=0.95): inputs=tokenizer(prompt,return_tensors='pt') outputs=model.generate(**inputs, max_length=max_length, temperature=temperature, top_p=top_p, do_sample=True) #input: input_id, weight_number generated_code=tokenizer.decode(outputs[0],skip_special_tokens=True) return generated_code #Gradio interface with gr.Blocks() as demo: gr.Markdown("## CODE GENERATION WITH CODEGEN MODEL") #input box to add prompt prompt=gr.Textbox(lines=10, label='Enter your prompt for code generation') max_length=gr.Slider(50,500, value=100, label='Max Length') temperature=gr.Slider(0.1,0.9, value=0.7, label='Temperature') top_p=gr.Slider(0.1,1.0, value=0.95, label='Top P value') output_box=gr.Textbox(lines=20, label='Generated Code') generate_button=gr.Button('Generate code') generate_button.click(fn=generate_code, inputs=[prompt,max_length,temperature,top_p], outputs=output_box) demo.launch()