Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn.functional as F | |
| from typing import Tuple | |
| from cotracker.models.core.cotracker.cotracker import CoTracker2 | |
| from cotracker.models.core.model_utils import get_points_on_a_grid | |
| class EvaluationPredictor(torch.nn.Module): | |
| def __init__( | |
| self, | |
| cotracker_model: CoTracker2, | |
| interp_shape: Tuple[int, int] = (384, 512), | |
| grid_size: int = 5, | |
| local_grid_size: int = 8, | |
| single_point: bool = True, | |
| n_iters: int = 6, | |
| ) -> None: | |
| super(EvaluationPredictor, self).__init__() | |
| self.grid_size = grid_size | |
| self.local_grid_size = local_grid_size | |
| self.single_point = single_point | |
| self.interp_shape = interp_shape | |
| self.n_iters = n_iters | |
| self.model = cotracker_model | |
| self.model.eval() | |
| def forward(self, video, queries): | |
| queries = queries.clone() | |
| B, T, C, H, W = video.shape | |
| B, N, D = queries.shape | |
| assert D == 3 | |
| video = video.reshape(B * T, C, H, W) | |
| video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True) | |
| video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) | |
| device = video.device | |
| queries[:, :, 1] *= (self.interp_shape[1] - 1) / (W - 1) | |
| queries[:, :, 2] *= (self.interp_shape[0] - 1) / (H - 1) | |
| if self.single_point: | |
| traj_e = torch.zeros((B, T, N, 2), device=device) | |
| vis_e = torch.zeros((B, T, N), device=device) | |
| for pind in range((N)): | |
| query = queries[:, pind : pind + 1] | |
| t = query[0, 0, 0].long() | |
| traj_e_pind, vis_e_pind = self._process_one_point(video, query) | |
| traj_e[:, t:, pind : pind + 1] = traj_e_pind[:, :, :1] | |
| vis_e[:, t:, pind : pind + 1] = vis_e_pind[:, :, :1] | |
| else: | |
| if self.grid_size > 0: | |
| xy = get_points_on_a_grid(self.grid_size, video.shape[3:]) | |
| xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) # | |
| queries = torch.cat([queries, xy], dim=1) # | |
| traj_e, vis_e, __ = self.model( | |
| video=video, | |
| queries=queries, | |
| iters=self.n_iters, | |
| ) | |
| traj_e[:, :, :, 0] *= (W - 1) / float(self.interp_shape[1] - 1) | |
| traj_e[:, :, :, 1] *= (H - 1) / float(self.interp_shape[0] - 1) | |
| return traj_e, vis_e | |
| def _process_one_point(self, video, query): | |
| t = query[0, 0, 0].long() | |
| device = query.device | |
| if self.local_grid_size > 0: | |
| xy_target = get_points_on_a_grid( | |
| self.local_grid_size, | |
| (50, 50), | |
| [query[0, 0, 2].item(), query[0, 0, 1].item()], | |
| ) | |
| xy_target = torch.cat([torch.zeros_like(xy_target[:, :, :1]), xy_target], dim=2).to( | |
| device | |
| ) # | |
| query = torch.cat([query, xy_target], dim=1) # | |
| if self.grid_size > 0: | |
| xy = get_points_on_a_grid(self.grid_size, video.shape[3:]) | |
| xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) # | |
| query = torch.cat([query, xy], dim=1) # | |
| # crop the video to start from the queried frame | |
| query[0, 0, 0] = 0 | |
| traj_e_pind, vis_e_pind, __ = self.model( | |
| video=video[:, t:], queries=query, iters=self.n_iters | |
| ) | |
| return traj_e_pind, vis_e_pind | |