Spaces:
Runtime error
Runtime error
Format code with black
Browse files
app.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
from transformers import T5ForConditionalGeneration, T5TokenizerFast, pipeline
|
| 2 |
-
from transformers.models.f_t5.modeling_t5 import
|
| 3 |
-
T5ForConditionalGeneration as FT5ForConditionalGeneration
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import json
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
model_name = "flax-community/ft5-cnn-dm"
|
| 12 |
ft5_model = FT5ForConditionalGeneration.from_pretrained(model_name)
|
|
@@ -15,39 +18,47 @@ ft5_summarizer = pipeline(
|
|
| 15 |
"summarization", model=ft5_model, tokenizer=ft5_tokenizer, framework="pt"
|
| 16 |
)
|
| 17 |
|
| 18 |
-
#model_name = 'flax-community/t5-base-cnn-dm'
|
| 19 |
-
#t5_model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 20 |
-
#t5_tokenizer = T5TokenizerFast.from_pretrained(model_name)
|
| 21 |
-
#predict_t5 = get_predict(t5_model, t5_tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
def fn(text, do_sample, min_length, max_length,temperature, top_p):
|
| 24 |
-
out = ft5_summarizer(text, do_sample=do_sample, min_length=min_length,
|
| 25 |
-
max_length=max_length, temperature=temperature, top_p=top_p,
|
| 26 |
-
truncation=True)
|
| 27 |
-
return out[0]['summary_text']
|
| 28 |
import gradio as gr
|
| 29 |
|
| 30 |
interface = gr.Interface(
|
| 31 |
fn,
|
| 32 |
inputs=[
|
| 33 |
-
gr.inputs.Textbox(lines=10, label=
|
| 34 |
-
gr.inputs.Checkbox(label=
|
| 35 |
-
gr.inputs.Slider(1, 128, step=1, default=64, label=
|
| 36 |
-
gr.inputs.Slider(1, 128, step=1, default=64, label=
|
| 37 |
-
gr.inputs.Slider(0.0, 1.0, step=0.1, default=1, label=
|
| 38 |
-
gr.inputs.Slider(0.0, 1.0, step=0.1, default=1, label=
|
| 39 |
-
],
|
| 40 |
outputs=gr.outputs.Textbox(),
|
| 41 |
-
#server_port=8080,
|
| 42 |
-
#server_name='0.0.0.0',
|
| 43 |
examples=[[ex] for ex in examples],
|
| 44 |
-
title=
|
| 45 |
description="""
|
| 46 |
F-T5 is a hybrid encoder-decoder model based on T5 and FNet.
|
| 47 |
The model architecture is based on T5, except the encoder self attention is replaced by fourier transform as in FNet.
|
| 48 |
The model is pre-trained on openwebtext, fine-tuned on CNN/DM.
|
| 49 |
-
"""
|
| 50 |
-
|
| 51 |
)
|
| 52 |
|
| 53 |
interface.launch()
|
|
|
|
| 1 |
from transformers import T5ForConditionalGeneration, T5TokenizerFast, pipeline
|
| 2 |
+
from transformers.models.f_t5.modeling_t5 import (
|
| 3 |
+
T5ForConditionalGeneration as FT5ForConditionalGeneration,
|
| 4 |
+
)
|
| 5 |
+
from transformers.models.f_t5.tokenization_t5_fast import (
|
| 6 |
+
T5TokenizerFast as FT5TokenizerFast,
|
| 7 |
+
)
|
| 8 |
|
| 9 |
import json
|
| 10 |
+
|
| 11 |
+
with open("examples.json") as f:
|
| 12 |
+
examples = json.load(f)["article"]
|
| 13 |
|
| 14 |
model_name = "flax-community/ft5-cnn-dm"
|
| 15 |
ft5_model = FT5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
| 18 |
"summarization", model=ft5_model, tokenizer=ft5_tokenizer, framework="pt"
|
| 19 |
)
|
| 20 |
|
| 21 |
+
# model_name = 'flax-community/t5-base-cnn-dm'
|
| 22 |
+
# t5_model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 23 |
+
# t5_tokenizer = T5TokenizerFast.from_pretrained(model_name)
|
| 24 |
+
# predict_t5 = get_predict(t5_model, t5_tokenizer)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def fn(text, do_sample, min_length, max_length, temperature, top_p):
|
| 28 |
+
out = ft5_summarizer(
|
| 29 |
+
text,
|
| 30 |
+
do_sample=do_sample,
|
| 31 |
+
min_length=min_length,
|
| 32 |
+
max_length=max_length,
|
| 33 |
+
temperature=temperature,
|
| 34 |
+
top_p=top_p,
|
| 35 |
+
truncation=True,
|
| 36 |
+
)
|
| 37 |
+
return out[0]["summary_text"]
|
| 38 |
+
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
import gradio as gr
|
| 41 |
|
| 42 |
interface = gr.Interface(
|
| 43 |
fn,
|
| 44 |
inputs=[
|
| 45 |
+
gr.inputs.Textbox(lines=10, label="text"),
|
| 46 |
+
gr.inputs.Checkbox(label="do_sample"),
|
| 47 |
+
gr.inputs.Slider(1, 128, step=1, default=64, label="min_length"),
|
| 48 |
+
gr.inputs.Slider(1, 128, step=1, default=64, label="max_length"),
|
| 49 |
+
gr.inputs.Slider(0.0, 1.0, step=0.1, default=1, label="temperature"),
|
| 50 |
+
gr.inputs.Slider(0.0, 1.0, step=0.1, default=1, label="top_p"),
|
| 51 |
+
],
|
| 52 |
outputs=gr.outputs.Textbox(),
|
| 53 |
+
# server_port=8080,
|
| 54 |
+
# server_name='0.0.0.0',
|
| 55 |
examples=[[ex] for ex in examples],
|
| 56 |
+
title="F-T5 News Summarization",
|
| 57 |
description="""
|
| 58 |
F-T5 is a hybrid encoder-decoder model based on T5 and FNet.
|
| 59 |
The model architecture is based on T5, except the encoder self attention is replaced by fourier transform as in FNet.
|
| 60 |
The model is pre-trained on openwebtext, fine-tuned on CNN/DM.
|
| 61 |
+
""",
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
interface.launch()
|