Spaces:
Runtime error
Runtime error
ncoop57
commited on
Commit
·
d75a461
1
Parent(s):
c4d8cff
Add func to clean up the text generated by the model and added link to wiki
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 4 |
# model_name = "flax-community/gpt-neo-1.3B-apps-all"
|
| 5 |
model_name = "flax-community/gpt-neo-125M-apps-all"
|
| 6 |
|
|
|
|
| 7 |
@st.cache(allow_output_mutation=True, max_entries=1)
|
| 8 |
def get_model():
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
@@ -13,16 +14,29 @@ def get_model():
|
|
| 13 |
|
| 14 |
|
| 15 |
def format_input(question, starter_code=""):
|
| 16 |
-
answer_type =
|
| 17 |
-
|
|
|
|
| 18 |
return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
|
| 19 |
|
| 20 |
|
| 21 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
prompt = format_input(question, starter_code)
|
| 23 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 24 |
start = len(input_ids[0])
|
| 25 |
-
|
| 26 |
output = model.generate(
|
| 27 |
input_ids,
|
| 28 |
max_length=start + 150,
|
|
@@ -37,8 +51,10 @@ def generate_solution(model, tokenizer, question, starter_code="", temperature=1
|
|
| 37 |
repetition_penalty=None,
|
| 38 |
num_return_sequences=None,
|
| 39 |
)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
return
|
| 42 |
|
| 43 |
|
| 44 |
_EXAMPLES = [
|
|
@@ -76,10 +92,10 @@ def greet(name, owner):
|
|
| 76 |
0.8,
|
| 77 |
],
|
| 78 |
]
|
|
|
|
|
|
|
| 79 |
def run():
|
| 80 |
-
st.set_page_config(
|
| 81 |
-
page_title="Code Clippy Problem Solver"
|
| 82 |
-
)
|
| 83 |
# sidebar
|
| 84 |
st.sidebar.title("Code Clippy")
|
| 85 |
st.sidebar.image(
|
|
@@ -87,9 +103,10 @@ def run():
|
|
| 87 |
caption="(c) awesome Aimee Trevett",
|
| 88 |
)
|
| 89 |
st.sidebar.markdown("[Github](https://github.com/ncoop57/gpt-code-clippy)")
|
| 90 |
-
|
|
|
|
| 91 |
st.sidebar.markdown("### Controls:")
|
| 92 |
-
|
| 93 |
temperature = st.sidebar.slider(
|
| 94 |
"Temperature",
|
| 95 |
min_value=0.5,
|
|
@@ -113,17 +130,17 @@ def run():
|
|
| 113 |
help="Text description of the coding problem to be solved",
|
| 114 |
)
|
| 115 |
starter_code = st.text_input(
|
| 116 |
-
"Started code: ",
|
| 117 |
-
value="def greet(name):",
|
| 118 |
-
help="Optional starter code"
|
| 119 |
)
|
| 120 |
submit_button = st.button("Solve")
|
| 121 |
|
| 122 |
if submit_button:
|
| 123 |
st.text("Solution:")
|
| 124 |
-
output = generate_solution(
|
|
|
|
|
|
|
| 125 |
st.code(output, language="python")
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
|
|
|
| 129 |
run()
|
|
|
|
| 4 |
# model_name = "flax-community/gpt-neo-1.3B-apps-all"
|
| 5 |
model_name = "flax-community/gpt-neo-125M-apps-all"
|
| 6 |
|
| 7 |
+
|
| 8 |
@st.cache(allow_output_mutation=True, max_entries=1)
|
| 9 |
def get_model():
|
| 10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def format_input(question, starter_code=""):
|
| 17 |
+
answer_type = (
|
| 18 |
+
"\nUse Call-Based format\n" if starter_code else "\nUse Standard Input format\n"
|
| 19 |
+
)
|
| 20 |
return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
|
| 21 |
|
| 22 |
|
| 23 |
+
def clean_text(generation):
|
| 24 |
+
# clean up text has discussed in OpenAI's paper "Evaluating Large Language Models Trained on Code"
|
| 25 |
+
generation = generation.split("\ndef")[0]
|
| 26 |
+
generation = generation.split("\nclass")[0]
|
| 27 |
+
generation = generation.split("\n#")[0]
|
| 28 |
+
generation = generation.split("\nif")[0]
|
| 29 |
+
|
| 30 |
+
return generation
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def generate_solution(
|
| 34 |
+
model, tokenizer, question, starter_code="", temperature=1.0, num_beams=1
|
| 35 |
+
):
|
| 36 |
prompt = format_input(question, starter_code)
|
| 37 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 38 |
start = len(input_ids[0])
|
| 39 |
+
|
| 40 |
output = model.generate(
|
| 41 |
input_ids,
|
| 42 |
max_length=start + 150,
|
|
|
|
| 51 |
repetition_penalty=None,
|
| 52 |
num_return_sequences=None,
|
| 53 |
)
|
| 54 |
+
output_str = tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
|
| 55 |
+
output_str = clean_text(output_str)
|
| 56 |
|
| 57 |
+
return output_str
|
| 58 |
|
| 59 |
|
| 60 |
_EXAMPLES = [
|
|
|
|
| 92 |
0.8,
|
| 93 |
],
|
| 94 |
]
|
| 95 |
+
|
| 96 |
+
|
| 97 |
def run():
|
| 98 |
+
st.set_page_config(page_title="Code Clippy Problem Solver")
|
|
|
|
|
|
|
| 99 |
# sidebar
|
| 100 |
st.sidebar.title("Code Clippy")
|
| 101 |
st.sidebar.image(
|
|
|
|
| 103 |
caption="(c) awesome Aimee Trevett",
|
| 104 |
)
|
| 105 |
st.sidebar.markdown("[Github](https://github.com/ncoop57/gpt-code-clippy)")
|
| 106 |
+
st.sidebar.markdown("[Report](https://github.com/ncoop57/gpt-code-clippy/wiki)")
|
| 107 |
+
|
| 108 |
st.sidebar.markdown("### Controls:")
|
| 109 |
+
|
| 110 |
temperature = st.sidebar.slider(
|
| 111 |
"Temperature",
|
| 112 |
min_value=0.5,
|
|
|
|
| 130 |
help="Text description of the coding problem to be solved",
|
| 131 |
)
|
| 132 |
starter_code = st.text_input(
|
| 133 |
+
"Started code: ", value="def greet(name):", help="Optional starter code"
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
submit_button = st.button("Solve")
|
| 136 |
|
| 137 |
if submit_button:
|
| 138 |
st.text("Solution:")
|
| 139 |
+
output = generate_solution(
|
| 140 |
+
model, tokenizer, question, starter_code, temperature, num_beams
|
| 141 |
+
)
|
| 142 |
st.code(output, language="python")
|
|
|
|
| 143 |
|
| 144 |
+
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
run()
|