Spaces:
Sleeping
Sleeping
File size: 44,511 Bytes
40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec cf0dcf2 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 1ced89b 40d06ec 2a1cb72 40d06ec 146c86c 40d06ec 146c86c 40d06ec 146c86c 40d06ec 146c86c 40d06ec 146c86c 70a945f 146c86c 70a945f 146c86c 40d06ec 146c86c 40d06ec aa17c5e 2a1cb72 40d06ec aa17c5e 1ced89b aa17c5e 2a1cb72 aa17c5e 40d06ec aa17c5e 2a1cb72 40d06ec cf0dcf2 40d06ec cf0dcf2 40d06ec cf0dcf2 40d06ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
import os
import json
import hashlib
import random
import threading
import time
from dataclasses import dataclass
from typing import List, Dict, Any, Optional, Tuple
import gradio as gr
from PIL import Image
from huggingface_hub import HfApi, CommitOperationAdd
from huggingface_hub import snapshot_download
# ----------------------
# Configuration
# ----------------------
# Core evaluation parameters
NUM_MODEL_FOLDERS = 5 # Number of model output folders to compare
NUM_IMAGES_TO_RANK = NUM_MODEL_FOLDERS + 1 # Models + LR reference (7 total by default)
TARGET_PER_PERSON = 10 # Number of rounds each person should complete
IMAGES_PER_ROW = 3 # Number of images to display per row in the UI
REFERENCE_IMAGE_HEIGHT = 180 # Height for reference image display
CANDIDATE_IMAGE_HEIGHT_STEP_A = 200 # Height for candidate images in step A
CANDIDATE_IMAGE_HEIGHT_STEP_B = 180 # Height for candidate images in step B
# Contact and messaging
CONTACT_EMAIL = "ffallah[at]asu.edu"
STUDY_TITLE = "Image Evaluation Study"
STEP_A_CRITERION = "quality"
STEP_B_CRITERION = "sim_refA"
STEP_A_INSTRUCTION = "Rank by quality (1 = best)"
STEP_B_INSTRUCTION = "Rank by similarity to Reference A (1 = most similar)"
# HuggingFace configuration
HF_RESULTS_REPO = os.getenv("HF_RESULTS_REPO")
HF_RESULTS_REPO_TYPE = "dataset"
HF_TOKEN = os.getenv("HF_TOKEN")
_hf_api = HfApi(token=HF_TOKEN) if HF_TOKEN else None
# ----------------------
# FOLDER CONFIGURATION - MODIFY THIS SECTION
# ----------------------
# Directly specify your folder paths here
MODEL_FOLDERS = [
"data/rareflow", # Model 1
"data/misr", # Model 2
"data/seesr", # Model 3
"data/samsr", # Model 4
"data/adc", # Model 5
]
# Reference folders
HIGH_RES_FOLDER = "data/hr" # High resolution reference images
LOW_RES_FOLDER = "data/lr" # Low resolution reference images
# Override with environment variables if they exist
for i in range(NUM_MODEL_FOLDERS):
env_var = f"FOLDER_{i+1}"
env_value = os.environ.get(env_var)
if env_value:
if i < len(MODEL_FOLDERS):
MODEL_FOLDERS[i] = env_value
else:
MODEL_FOLDERS.append(env_value)
# Ensure we have exactly NUM_MODEL_FOLDERS folders
if len(MODEL_FOLDERS) < NUM_MODEL_FOLDERS:
raise ValueError(
f"Not enough model folders specified. Expected {NUM_MODEL_FOLDERS}, got {len(MODEL_FOLDERS)}. "
f"Please specify all folder paths in MODEL_FOLDERS list."
)
elif len(MODEL_FOLDERS) > NUM_MODEL_FOLDERS:
MODEL_FOLDERS = MODEL_FOLDERS[:NUM_MODEL_FOLDERS]
# Override reference folders with environment variables if they exist
HIGH_RES_FOLDER = os.environ.get("HIGH_RES_FOLDER", HIGH_RES_FOLDER)
LOW_RES_FOLDER = os.environ.get("LOW_RES_FOLDER", LOW_RES_FOLDER)
INPUT_DATASET_REPO = os.getenv("INPUT_DATASET_REPO", "").strip()
if INPUT_DATASET_REPO:
_ds_local = snapshot_download(
repo_id=INPUT_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN, # uses your secret
allow_patterns=["data/**"],
local_dir_use_symlinks=False,
)
_root = os.path.join(_ds_local, "data")
# If your subfolder names are different, change these 7 lines only:
MODEL_FOLDERS = [
os.path.join(_root, "rareflow"),
os.path.join(_root, "misr"),
os.path.join(_root, "seesr"),
os.path.join(_root, "samsr"),
os.path.join(_root, "adc"),
]
HIGH_RES_FOLDER = os.path.join(_root, "hr")
LOW_RES_FOLDER = os.path.join(_root, "lr")
# Use MODEL_FOLDERS as MAIN_FOLDERS for compatibility
MAIN_FOLDERS = MODEL_FOLDERS
# Results configuration
RESULTS_DIR = os.environ.get("RESULTS_DIR", "new_results")
PROGRESS_PATH = os.path.join(RESULTS_DIR, "progress.json")
GLOBAL_PROGRESS_PATH = os.path.join(RESULTS_DIR, "global_progress.json") # NEW: Track global completion
ALL_RESULTS_JSONL = os.path.join(RESULTS_DIR, "all_results.jsonl")
SAVE_PII = True # PII hidden from UI; set False to omit in logs
# Compact results configuration
COMPACT_DIR = os.environ.get("COMPACT_DIR", os.path.join(RESULTS_DIR, "compact"))
WRITE_VERBOSE_EVENTS = False # Set to True if you want detailed JSONL event logs
# File handling
VALID_IMAGE_EXTENSIONS = {".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif"}
MAX_ATOMIC_SAVE_ATTEMPTS = 10
ATOMIC_SAVE_INITIAL_DELAY = 0.05
ATOMIC_SAVE_MAX_DELAY = 0.5
# Generate letters dynamically based on number of images
LETTERS = [chr(ord('A') + i) for i in range(NUM_IMAGES_TO_RANK)]
# Threading
WRITE_LOCK = threading.Lock()
# ----------------------
# Global Progress Management (NEW)
# ----------------------
def load_global_progress() -> Dict[str, Any]:
"""Load global progress tracking total images completed across all users."""
if not os.path.exists(GLOBAL_PROGRESS_PATH):
return {"total_images_completed": 0, "user_assignments": {}}
try:
with open(GLOBAL_PROGRESS_PATH, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {"total_images_completed": 0, "user_assignments": {}}
def save_global_progress(global_progress: Dict[str, Any]):
"""Save global progress atomically."""
with WRITE_LOCK:
with open(GLOBAL_PROGRESS_PATH, "w", encoding="utf-8") as f:
json.dump(global_progress, f, ensure_ascii=False, indent=2)
def get_user_image_assignment(uid: str, available_images: List[str]) -> List[str]:
"""
Get or create the image assignment for a user.
This ensures each new user gets the next sequential set of images.
"""
global_progress = load_global_progress()
user_assignments = global_progress.get("user_assignments", {})
# If user already has an assignment, return it
if uid in user_assignments:
return user_assignments[uid]["assigned_images"]
# Calculate starting point for new user
total_completed = global_progress.get("total_images_completed", 0)
num_available = len(available_images)
# Build the assignment list with wrapping
assigned_images = []
for i in range(TARGET_PER_PERSON):
image_idx = (total_completed + i) % num_available
assigned_images.append(available_images[image_idx])
# Save the assignment
user_assignments[uid] = {
"assigned_images": assigned_images,
"start_index": total_completed,
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime())
}
# Update total for next user
global_progress["total_images_completed"] = total_completed + TARGET_PER_PERSON
global_progress["user_assignments"] = user_assignments
save_global_progress(global_progress)
return assigned_images
def get_global_stats() -> Dict[str, int]:
"""Get statistics about global progress."""
global_progress = load_global_progress()
available_images = get_available_images()
total_images = len(available_images)
total_completed = global_progress.get("total_images_completed", 0)
num_users = len(global_progress.get("user_assignments", {}))
# Calculate how many complete cycles through all images
complete_cycles = total_completed // total_images if total_images > 0 else 0
images_in_current_cycle = total_completed % total_images if total_images > 0 else 0
return {
"total_images": total_images,
"total_completed": total_completed,
"num_users": num_users,
"complete_cycles": complete_cycles,
"images_in_current_cycle": images_in_current_cycle
}
# ----------------------
# Helpers
# ----------------------
def _ensure_private_repo(repo_id: str):
if not _hf_api:
return
try:
_hf_api.repo_info(repo_id, repo_type=HF_RESULTS_REPO_TYPE)
except Exception:
_hf_api.create_repo(repo_id=repo_id, repo_type=HF_RESULTS_REPO_TYPE, private=True)
def push_results_to_private_repo(uid: str):
if not HF_TOKEN or not HF_RESULTS_REPO or not _hf_api:
return
try:
_ensure_private_repo(HF_RESULTS_REPO)
os.makedirs(RESULTS_DIR, exist_ok=True)
open(ALL_RESULTS_JSONL, "a").close()
user_file = os.path.join(RESULTS_DIR, f"{uid}.jsonl")
open(user_file, "a").close()
compact_user_file = _compact_user_path(uid)
ops = [
CommitOperationAdd(path_in_repo="new_results/all_results.jsonl", path_or_fileobj=ALL_RESULTS_JSONL),
CommitOperationAdd(path_in_repo=f"new_results/users/{uid}.jsonl", path_or_fileobj=user_file),
CommitOperationAdd(path_in_repo=f"new_results/compact/{uid}.json", path_or_fileobj=compact_user_file),
]
# Also upload global progress
if os.path.exists(GLOBAL_PROGRESS_PATH):
ops.append(CommitOperationAdd(
path_in_repo="new_results/global_progress.json",
path_or_fileobj=GLOBAL_PROGRESS_PATH
))
_hf_api.create_commit(
repo_id=HF_RESULTS_REPO,
repo_type=HF_RESULTS_REPO_TYPE,
operations=ops,
commit_message="Update evaluation results"
)
except Exception as e:
print(f"[WARN] push_results_to_private_repo failed: {e}")
def ensure_paths():
os.makedirs(RESULTS_DIR, exist_ok=True)
os.makedirs(COMPACT_DIR, exist_ok=True)
# Check model folders
for i, folder in enumerate(MODEL_FOLDERS):
if not os.path.isdir(folder):
raise FileNotFoundError(
f"Model folder {i+1} not found: '{folder}'. "
f"Please create it and add images with matching filenames."
)
# Check reference folders
if not os.path.isdir(HIGH_RES_FOLDER):
raise FileNotFoundError(
f"High resolution folder not found: '{HIGH_RES_FOLDER}'. "
f"Please create it and add reference images."
)
if not os.path.isdir(LOW_RES_FOLDER):
raise FileNotFoundError(
f"Low resolution folder not found: '{LOW_RES_FOLDER}'. "
f"Please create it and add reference images."
)
def load_image(path: str) -> Optional[Image.Image]:
try:
return Image.open(path).convert("RGB")
except Exception as e:
print(f"Error loading image {path}: {e}")
return None
def get_available_images() -> List[str]:
ref_folder = MODEL_FOLDERS[0] if MODEL_FOLDERS else None
if not ref_folder or not os.path.exists(ref_folder):
return []
out = []
for fn in os.listdir(ref_folder):
if not any(fn.lower().endswith(ext) for ext in VALID_IMAGE_EXTENSIONS):
continue
# Check if file exists in all folders
if all(os.path.exists(os.path.join(f, fn)) for f in MODEL_FOLDERS + [HIGH_RES_FOLDER, LOW_RES_FOLDER]):
out.append(fn)
return sorted(out)
def append_jsonl(path: str, record: Dict[str, Any]):
line = json.dumps(record, ensure_ascii=False)
with WRITE_LOCK:
with open(path, "a", encoding="utf-8") as f:
f.write(line + "\n")
def load_progress() -> Dict[str, Dict[str, Any]]:
if not os.path.exists(PROGRESS_PATH):
return {}
try:
with open(PROGRESS_PATH, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
def save_progress(progress: Dict[str, Dict[str, Any]]):
with WRITE_LOCK:
with open(PROGRESS_PATH, "w", encoding="utf-8") as f:
json.dump(progress, f, ensure_ascii=False, indent=2)
def hash_user_id(name: str, email: str) -> str:
norm = (name or "").strip().lower() + "|" + (email or "").strip().lower()
return hashlib.sha256(norm.encode("utf-8")).hexdigest()[:16]
# ----------------------
# Compact results helpers
# ----------------------
def _compact_user_path(uid: str) -> str:
return os.path.join(COMPACT_DIR, f"{uid}.json")
def _atomic_save_json(path: str, obj: Dict[str, Any], max_tries: int = MAX_ATOMIC_SAVE_ATTEMPTS,
delay: float = ATOMIC_SAVE_INITIAL_DELAY):
os.makedirs(os.path.dirname(path), exist_ok=True)
# Unique temp name (prevents interleaving when multiple threads/processes write)
tmp = f"{path}.tmp.{os.getpid()}.{threading.get_ident()}"
data = json.dumps(obj, ensure_ascii=False, indent=2)
for attempt in range(max_tries):
try:
with WRITE_LOCK: # intra-process guard
with open(tmp, "w", encoding="utf-8") as f:
f.write(data)
# Atomic replace; may raise PermissionError on Windows if target is open
os.replace(tmp, path)
return
except PermissionError:
# Windows: another process (AV/indexer/uploader) has the target open.
# Backoff a bit and try again.
time.sleep(delay)
delay = min(ATOMIC_SAVE_MAX_DELAY, delay * 2)
except Exception:
# Clean up temp on unexpected errors
try:
if os.path.exists(tmp):
os.remove(tmp)
except Exception:
pass
raise
# Last-gasp fallback: try direct write (not atomic, but better than nothing)
with WRITE_LOCK:
with open(path, "w", encoding="utf-8") as f:
f.write(data)
try:
if os.path.exists(tmp):
os.remove(tmp)
except Exception:
pass
def _load_compact_user(uid: str) -> Dict[str, Any]:
path = _compact_user_path(uid)
if not os.path.exists(path):
return {}
try:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
def _ensure_compact_user(uid: str, name: Optional[str] = None, email: Optional[str] = None) -> Dict[str, Any]:
data = _load_compact_user(uid)
if not data:
data = {"uid": uid, "name": name or "", "email": email or "", "rounds": []}
_atomic_save_json(_compact_user_path(uid), data)
return data
changed = False
# Only overwrite if a non-empty value is provided
if name:
if data.get("name") != name:
data["name"] = name
changed = True
if email:
if data.get("email") != email:
data["email"] = email
changed = True
if changed:
_atomic_save_json(_compact_user_path(uid), data)
return data
def _compact_upsert_round(uid: str, name: str, email: str, filename: str):
"""
Ensure a round record exists for this filename. If the newest entry for this
filename already has step2_order filled, we insert a NEW round for the same image
(edge case: repeat). Otherwise we reuse the most recent incomplete one.
"""
data = _ensure_compact_user(uid, name, email)
rounds = data.setdefault("rounds", [])
# find the most recent round with this filename that still needs step2
for r in reversed(rounds):
if r.get("image") == filename and r.get("step2_order") is None:
return # already have an in-progress entry for this image
# otherwise append a new round entry
rounds.append({"image": filename, "step1_order": None, "step2_order": None})
_atomic_save_json(_compact_user_path(uid), data)
def _compact_write_step(uid: str, filename: str, *, step: str, order_letters: List[str]):
"""
step ∈ {"step1_order","step2_order"}; update most-recent matching round.
"""
assert step in {"step1_order", "step2_order"}
data = _load_compact_user(uid)
rounds = data.get("rounds", [])
for r in reversed(rounds):
if r.get("image") == filename:
r[step] = order_letters
_atomic_save_json(_compact_user_path(uid), data)
return
# If we got here, no round exists yet (shouldn't happen if we upsert at start)
# Create it defensively:
new_round = {"image": filename, "step1_order": None, "step2_order": None}
new_round[step] = order_letters
data.setdefault("rounds", []).append(new_round)
_atomic_save_json(_compact_user_path(uid), data)
# ----------------------
# Round building
# ----------------------
def _folder_keys() -> List[str]:
"""Generate identifiers for each folder based on folder path basename"""
keys = []
# Use basename of each model folder as key
for folder in MODEL_FOLDERS:
basename = os.path.basename(folder.rstrip("/"))
if not basename: # Handle edge case of root paths
basename = folder.replace("/", "_").replace("\\", "_")
keys.append(basename)
# Add LR folder key (since LR is now in the options)
lr_basename = os.path.basename(LOW_RES_FOLDER.rstrip("/"))
if not lr_basename:
lr_basename = "lr"
keys.append(lr_basename)
return keys # length = NUM_IMAGES_TO_RANK
def _build_candidate_paths(filename: str) -> List[str]:
"""Build paths to candidate images from all model folders plus HR"""
paths = [os.path.join(f, filename) for f in MODEL_FOLDERS]
# LR is now one of the options
paths.append(os.path.join(LOW_RES_FOLDER, filename))
assert len(paths) == NUM_IMAGES_TO_RANK
return paths
def _start_round_state(uid: str, user_assigned_images: List[str], progress: Dict[str, Any]) -> Tuple[str, List[int]]:
"""
Decide filename and order for the current round using user's pre-assigned images.
Returns (filename, order_idx).
"""
entry = progress.setdefault(uid, {})
completed = entry.get("completed_rounds", 0)
if "round_filename" in entry and "order_idx" in entry:
return entry["round_filename"], entry["order_idx"]
# Use the user's assigned images (not global pool)
if completed >= len(user_assigned_images):
# Should not happen if TARGET_PER_PERSON is set correctly
filename = user_assigned_images[-1]
else:
filename = user_assigned_images[completed]
seed = random.getrandbits(32)
rng = random.Random(seed)
order_idx = list(range(NUM_IMAGES_TO_RANK))
rng.shuffle(order_idx)
entry["current_step"] = "A"
entry["round_filename"] = filename
entry["order_idx"] = order_idx
entry["seed"] = seed
save_progress(progress)
# Write round_start record once
_write_round_start(uid, filename, order_idx, seed)
return filename, order_idx
def _write_round_start(uid: str, filename: str, order_idx: List[int], seed: int):
if not WRITE_VERBOSE_EVENTS:
return # suppress verbose event logs unless enabled
source_keys = _folder_keys()
candidate_map = {LETTERS[pos]: source_keys[idx] for pos, idx in enumerate(order_idx)}
record = {
"event": "round_start",
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()),
"user_id": uid,
"round_filename": filename,
"seed": seed,
"candidate_map": candidate_map,
"referenceA_type": "hr",
"referenceA_filename": filename
}
os.makedirs(RESULTS_DIR, exist_ok=True)
append_jsonl(ALL_RESULTS_JSONL, record)
append_jsonl(os.path.join(RESULTS_DIR, f"{uid}.jsonl"), record)
def _ranks_to_order_letters(ranks: List[int]) -> List[str]:
# ranks[i] = rank of position i (0-based). We return letters by rank ascending.
n = len(ranks)
order = []
for r in range(1, n + 1):
idx = ranks.index(r)
order.append(LETTERS[idx])
return order
# ----------------------
# Selection & labeling
# ----------------------
def _toggle_selection(selection: Optional[List[int]], idx: int, n: int = NUM_IMAGES_TO_RANK) -> List[int]:
sel = list(selection or [])
if idx in sel:
sel.remove(idx)
else:
if len(sel) < n:
sel.append(idx)
return sel
def _compute_rank_labels(selection: List[int], names: List[str]) -> Tuple[List[str], str]:
n = len(names)
ranks = [0] * n
for rank, image_pos in enumerate(selection, start=1):
if 1 <= image_pos <= n:
ranks[image_pos - 1] = rank
labels = [
(f"{names[i-1]} — Rank {ranks[i-1]}" if ranks[i-1] else names[i-1])
for i in range(1, n + 1)
]
ranking_str = ",".join(str(r) for r in ranks) if 0 not in ranks else ""
return labels, ranking_str
def _make_click_handler_with_names(n: int, ranking_box: gr.Textbox, state_sel: gr.State, names: List[str]):
def _handler_for_index(idx: int):
def _handler(current_selection: List[int]):
sel = _toggle_selection(current_selection, idx, n=n)
labels, ranking_str = _compute_rank_labels(sel, names=names)
img_updates = [gr.update(label=labels[i]) for i in range(n)]
return (*img_updates, gr.update(value=ranking_str), sel)
return _handler
return _handler_for_index
# ----------------------
# Validation helpers
# ----------------------
def _is_complete_ranking(ranks_str: str, n: int = NUM_IMAGES_TO_RANK) -> bool:
"""Return True iff ranks_str is like '1,2,...,n' in some permuted order per image."""
try:
parts = [int(x.strip()) for x in ranks_str.split(",")]
except Exception:
return False
if len(parts) != n:
return False
return set(parts) == set(range(1, n + 1))
# ----------------------
# Save answers
# ----------------------
def _save_answer(user_meta: Dict[str, Any], criterion: str, ranks_str: str) -> List[str]:
ranks = [int(x.strip()) for x in ranks_str.split(",")]
letters_by_rank = _ranks_to_order_letters(ranks)
if WRITE_VERBOSE_EVENTS:
record = {
"event": "answer",
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()),
"user_id": user_meta["uid"],
"name": user_meta["name"] if SAVE_PII else None,
"email": user_meta["email"] if SAVE_PII else None,
"round_index": user_meta["completed_rounds"] + 1,
"round_filename": user_meta["round_filename"],
"criterion": criterion,
"ranking_letters": letters_by_rank
}
os.makedirs(RESULTS_DIR, exist_ok=True)
append_jsonl(os.path.join(RESULTS_DIR, f"{user_meta['uid']}.jsonl"), record)
append_jsonl(ALL_RESULTS_JSONL, record)
return letters_by_rank
# ----------------------
# UI logic
# ----------------------
def _prep_images_for_round(filename: str, order_idx: List[int]):
# Build candidate images (models + LR) and reference (HR)
paths = _build_candidate_paths(filename)
ordered_paths = [paths[i] for i in order_idx]
imgs = [load_image(p) for p in ordered_paths]
# HR is the reference now
ref_hr = load_image(os.path.join(HIGH_RES_FOLDER, filename))
# Labels "Image A..G"
names = [f"Image {LETTERS[i]}" for i in range(NUM_IMAGES_TO_RANK)]
return imgs, ref_hr, names
def start_or_resume(name: str, email: str):
if not name or not email:
# Non-destructive validation
gr.Warning("Please enter your name and email to begin.")
# Generate the correct number of updates
img_updates = [gr.update()] * NUM_IMAGES_TO_RANK * 2 # for both A and B images
return (
"", [], 0, "A", [], "", [],
*img_updates,
gr.update(),
"Please enter your details to begin.",
gr.update(visible=False), # eval panel
gr.update(visible=False), # thanks
gr.update(visible=False), # A
gr.update(visible=False), # B
gr.update(), # name
gr.update(), # email
[], [], "", "", "", # states & inputs reset
gr.update(visible=True) # start_group stays visible
)
ensure_paths()
available = get_available_images()
if not available:
gr.Warning("No matching images found across all folders.")
img_updates = [gr.update()] * NUM_IMAGES_TO_RANK * 2
return (
"", [], 0, "A", [], "", [],
*img_updates,
gr.update(),
"No matching images found across all folders.",
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False),
gr.update(), gr.update(),
[], [], "", "", "",
gr.update(visible=True)
)
uid = hash_user_id(name, email)
# Get user's assigned images (this handles the sequential assignment)
user_assigned_images = get_user_image_assignment(uid, available)
progress = load_progress()
entry = progress.setdefault(uid, {"completed_rounds": 0})
completed = entry.get("completed_rounds", 0)
# Get global stats for display
stats = get_global_stats()
if completed >= TARGET_PER_PERSON:
status = f"Welcome back, {name}! You've completed all {TARGET_PER_PERSON} rounds. 🎉"
# Clear images and show thanks
img_updates = [gr.update(value=None)] * NUM_IMAGES_TO_RANK * 2
return (
uid, available, completed, "A", [], "", user_assigned_images,
*img_updates,
gr.update(value=None),
status,
gr.update(visible=False), # eval panel
gr.update(visible=True), # thanks
gr.update(visible=False), # A group
gr.update(visible=False), # B group
gr.update(visible=False), # hide name
gr.update(visible=False), # hide email
[], [], "", "", "",
gr.update(visible=False) # hide start_group after start
)
# Ensure current round state exists
filename, order_idx = _start_round_state(uid, user_assigned_images, progress)
_compact_upsert_round(uid, name, email, filename)
imgs, ref_hr, names = _prep_images_for_round(filename, order_idx)
# Show which images this user is assigned
global_info = f" (Your images: {entry.get('completed_rounds', 0) + 1}-{min((entry.get('completed_rounds', 0) + 1) + (TARGET_PER_PERSON - completed - 1), len(available))})"
status = f"Round {completed + 1} / {TARGET_PER_PERSON} • Step 1 / 2 — {STEP_A_INSTRUCTION}{global_info}"
# Prepare updates for both steps (same candidates)
a_updates = [gr.update(value=img, label=names[i]) for i, img in enumerate(imgs)]
b_updates = [gr.update(value=img, label=names[i]) for i, img in enumerate(imgs)]
return (
uid, available, completed, entry.get("current_step", "A"), order_idx, filename, user_assigned_images,
*a_updates,
*b_updates,
gr.update(value=ref_hr, label="Reference A (HR, not clickable)"), status,
gr.update(visible=True), # eval panel
gr.update(visible=False), # thanks
gr.update(visible=True), # show A
gr.update(visible=False), # hide B
gr.update(visible=False), # hide name
gr.update(visible=False), # hide email
[], [], "", "", "", # selections & inputs
gr.update(visible=False) # hide start_group after start
)
def continue_after_A(name: str, email: str, uid: str, available: List[str], completed_rounds: int,
current_step: str, order_idx: List[int], round_filename: str,
user_assigned_images: List[str], a_ranking: str):
if not a_ranking or not _is_complete_ranking(a_ranking, n=NUM_IMAGES_TO_RANK):
gr.Warning(f"Please rank all {NUM_IMAGES_TO_RANK} images (1–{NUM_IMAGES_TO_RANK}). Your selections are preserved.")
# Keep Step A visible, do not advance
return (
f"⚠️ Step A: please rank all {NUM_IMAGES_TO_RANK} images before continuing.",
gr.update(visible=True), # A group stays visible
gr.update(visible=False) # B group stays hidden
)
# Save Step A
letters_by_rank = _save_answer(
{
"uid": uid, "name": name, "email": email,
"completed_rounds": completed_rounds,
"round_filename": round_filename
},
criterion=STEP_A_CRITERION,
ranks_str=a_ranking
)
# Write compact step1_order and push
_compact_write_step(uid, round_filename, step="step1_order", order_letters=letters_by_rank)
# Move to step B
progress = load_progress()
progress.setdefault(uid, {})
progress[uid]["current_step"] = "B"
save_progress(progress)
status = f"✅ Saved. Round {completed_rounds + 1} / {TARGET_PER_PERSON} • Step 2 / 2 — {STEP_B_INSTRUCTION}"
return (
status,
gr.update(visible=False), # A group
gr.update(visible=True) # B group
)
def submit_after_B(name: str, email: str, uid: str, available: List[str], completed_rounds: int,
current_step: str, order_idx: List[int], round_filename: str,
user_assigned_images: List[str], b_ranking: str, notes: str):
if not b_ranking or not _is_complete_ranking(b_ranking, n=NUM_IMAGES_TO_RANK):
gr.Warning(f"Please rank all {NUM_IMAGES_TO_RANK} images (1–{NUM_IMAGES_TO_RANK}) for similarity. Your selections are preserved.")
# Keep Step B visible
img_updates = [gr.update()] * NUM_IMAGES_TO_RANK * 2
return (
completed_rounds, current_step, order_idx, round_filename,
*img_updates,
gr.update(), # no change to ref
f"⚠️ Step B: please rank all {NUM_IMAGES_TO_RANK} images before submitting.",
gr.update(visible=True), # eval panel
gr.update(visible=False), # thanks
gr.update(visible=False), # A
gr.update(visible=True), # B
[], [], "", "", notes # keep B selections in state (leave notes as-is)
)
# Save Step B
letters_by_rank = _save_answer(
{
"uid": uid, "name": name, "email": email,
"completed_rounds": completed_rounds,
"round_filename": round_filename
},
criterion=STEP_B_CRITERION,
ranks_str=b_ranking
)
# Write compact step2_order
_compact_write_step(uid, round_filename, step="step2_order", order_letters=letters_by_rank)
# Mark round complete
progress = load_progress()
entry = progress.setdefault(uid, {"completed_rounds": 0})
entry["completed_rounds"] = completed_rounds + 1
entry.pop("round_filename", None)
entry.pop("order_idx", None)
entry.pop("seed", None)
entry["current_step"] = "A"
save_progress(progress)
# Optional push
push_results_to_private_repo(uid)
# Finished all rounds?
if entry["completed_rounds"] >= TARGET_PER_PERSON:
status = f"✅ All {TARGET_PER_PERSON} rounds completed! Thank you!"
img_updates_clear = [gr.update(value=None)] * NUM_IMAGES_TO_RANK * 2
return (
entry["completed_rounds"], "A", [], "",
*img_updates_clear,
gr.update(value=None),
status,
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False), gr.update(visible=False),
[], [], "", "", ""
)
# Prepare NEXT round (A)
filename, new_order_idx = _start_round_state(uid, user_assigned_images, progress)
_compact_upsert_round(uid, name, email, filename)
imgs, ref_hr, names = _prep_images_for_round(filename, new_order_idx)
a_updates = [gr.update(value=img, label=names[i]) for i, img in enumerate(imgs)]
b_updates = [gr.update(value=img, label=names[i]) for i, img in enumerate(imgs)]
status = f"✅ Round {entry['completed_rounds']} completed! Now Round {entry['completed_rounds'] + 1} / {TARGET_PER_PERSON} • Step 1 / 2 — {STEP_A_INSTRUCTION}"
return (
entry["completed_rounds"], "A", new_order_idx, filename,
*a_updates,
*b_updates,
gr.update(value=ref_hr, label="Reference A (HR, not clickable)"), status,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True), gr.update(visible=False),
[], [], "", "", ""
)
# ----------------------
# UI
# ----------------------
if __name__ == "__main__":
print("=" * 60)
print("FOLDER CONFIGURATION:")
print("=" * 60)
print(f"Number of model folders: {NUM_MODEL_FOLDERS}")
print("\nModel folders:")
for i, folder in enumerate(MODEL_FOLDERS, 1):
exists = "✓" if os.path.isdir(folder) else "✗"
print(f" {i}. {folder} [{exists}]")
print(f"\nHigh resolution folder: {HIGH_RES_FOLDER} [{'✓' if os.path.isdir(HIGH_RES_FOLDER) else '✗'}]")
print(f"Low resolution folder: {LOW_RES_FOLDER} [{'✓' if os.path.isdir(LOW_RES_FOLDER) else '✗'}]")
print("=" * 60)
custom_css = f"""
.cand-a img {{
height: {CANDIDATE_IMAGE_HEIGHT_STEP_A}px !important;
width: auto !important;
object-fit: contain;
}}
.cand-b img {{
height: {CANDIDATE_IMAGE_HEIGHT_STEP_B}px !important;
width: auto !important;
object-fit: contain;
}}
.ref-a img {{
height: {REFERENCE_IMAGE_HEIGHT}px !important;
width: auto !important;
object-fit: contain;
}}
"""
with gr.Blocks(title=STUDY_TITLE, theme=gr.themes.Soft(), css=custom_css) as demo:
# Hidden state - Added user_assigned_images
state_uid = gr.State("")
state_available = gr.State([])
state_completed = gr.State(0)
state_current_step = gr.State("A")
state_order_idx = gr.State([])
state_round_filename = gr.State("")
state_user_assigned_images = gr.State([]) # NEW: Track user's assigned images
# Start screen (intro + name/email only on page 1)
with gr.Group(visible=True) as start_group:
gr.Markdown(
f"""
# {STUDY_TITLE}
In this study you will compare different versions of the **same image**.
Each **round** has **2 steps**:
---
## Step 1 – Rate image quality
- You will see **{NUM_IMAGES_TO_RANK} images** of the same scene.
- Click the image you think has the **best overall quality** first.
- This image gets **rank 1**.
- Then click the image with the next best quality (rank 2), and so on,
until **every image has a rank**.
---
## Step 2 – Match the high-resolution reference
- You will see **one reference image at the top**.
This is the **high-resolution (HR) reference**.
- At the bottom, you will see the **same {NUM_IMAGES_TO_RANK} images** again.
- Click the image that looks **most similar to the HR reference** first (rank 1),
then the next most similar, and so on, until **all images are ranked**.
---
## How the clicking works
- Every time you click an image, it gets the **next rank number**.
- Click the same image again to **remove** its rank and fix mistakes.
- You must give each image **one unique rank from 1 to {NUM_IMAGES_TO_RANK}**
before you can go to the next step.
---
## Rounds and saving
- There are **{TARGET_PER_PERSON} rounds** for you to complete.
- Your answers are **saved after each step**.
- If you close the page, you can **continue later**:
- Use the **same name and email** and click **“Start / Resume”**.
---
If you agree to take part, please enter your **full name** and **email** below,
then click **“Start / Resume”**.
For any questions: **{CONTACT_EMAIL}**
"""
)
with gr.Row():
name = gr.Textbox(label="Full name", placeholder="Jane Doe")
email = gr.Textbox(label="Email address", placeholder="jane@example.com")
start_btn = gr.Button("Start / Resume", variant="primary")
status = gr.Markdown("")
# Evaluation panel (hidden until Start)
eval_panel = gr.Group(visible=False)
with eval_panel:
# Step A — Quality
with gr.Group(visible=False) as group_A:
gr.Markdown(f"## Step A — {STEP_A_INSTRUCTION}")
# Create image components dynamically in rows
a_imgs = []
for i in range(0, NUM_IMAGES_TO_RANK, IMAGES_PER_ROW):
with gr.Row():
for j in range(i, min(i + IMAGES_PER_ROW, NUM_IMAGES_TO_RANK)):
img = gr.Image(
label=f"Image {LETTERS[j]}",
value=None, # will be filled via .update(...)
interactive=True, # keep tiles clickable
sources=[], # <- hides Upload/Webcam/Clipboard
show_download_button=False,
type="pil",
image_mode="RGB",
height= None, #CANDIDATE_IMAGE_HEIGHT_STEP_A,
elem_classes=["cand-a"],
)
a_imgs.append(img)
a_ranking = gr.Textbox(visible=False, interactive=False)
a_next = gr.Button("Continue →", variant="primary")
# Step B — Similarity to Reference A (LR)
with gr.Group(visible=False) as group_B:
gr.Markdown(f"## Step B — {STEP_B_INSTRUCTION}")
with gr.Row():
b_ref = gr.Image(
label="Reference A (HR)",
interactive=False, # not clickable
sources=[], # <- hides Upload/Webcam/Clipboard
show_download_button=False,
type="pil",
image_mode="RGB",
height= None, #REFERENCE_IMAGE_HEIGHT,
elem_classes=["ref-a"]
)
# Create image components dynamically in rows
b_imgs = []
for i in range(0, NUM_IMAGES_TO_RANK, IMAGES_PER_ROW):
with gr.Row():
for j in range(i, min(i + IMAGES_PER_ROW, NUM_IMAGES_TO_RANK)):
img = gr.Image(
label=f"Image {LETTERS[j]}",
value=None,
interactive=True, # keep tiles clickable
sources=[], # <- hides Upload/Webcam/Clipboard
show_download_button=False,
type="pil",
image_mode="RGB",
height= None, #CANDIDATE_IMAGE_HEIGHT_STEP_B
elem_classes=["cand-b"]
)
b_imgs.append(img)
b_ranking = gr.Textbox(visible=False, interactive=False)
notes = gr.Textbox(label="Optional notes", lines=3, placeholder="Any observations...")
submit_btn = gr.Button("Submit (finish round)", variant="primary")
thanks_group = gr.Group(visible=False)
with thanks_group:
gr.Markdown(
f"""
## 🎉 Thanks for participating!
You’ve completed **all {TARGET_PER_PERSON} rounds**.
Your responses have been **saved** and will be included in our analysis.
**What’s next?**
- You can safely **close this tab**.
- If you have more time later, you’re welcome to revisit—your progress is already complete.
- Questions or feedback? **{CONTACT_EMAIL}**
_We appreciate your help!_
"""
)
# Click-to-rank wiring (A)
names_A = [f"Image {ch}" for ch in LETTERS]
_a_handler = _make_click_handler_with_names(
n=NUM_IMAGES_TO_RANK, ranking_box=a_ranking, state_sel=gr.State([]), names=names_A
)
# Need persistent state for selections:
a_sel = gr.State([])
# Wire up click handlers for all images in step A
for i in range(NUM_IMAGES_TO_RANK):
a_imgs[i].select(
_a_handler(i + 1),
inputs=[a_sel],
outputs=[*a_imgs, a_ranking, a_sel]
)
# Click-to-rank wiring (B)
names_B = [f"Image {ch}" for ch in LETTERS]
b_sel = gr.State([])
_b_handler = _make_click_handler_with_names(
n=NUM_IMAGES_TO_RANK, ranking_box=b_ranking, state_sel=b_sel, names=names_B
)
# Wire up click handlers for all images in step B
for i in range(NUM_IMAGES_TO_RANK):
b_imgs[i].select(
_b_handler(i + 1),
inputs=[b_sel],
outputs=[*b_imgs, b_ranking, b_sel]
)
# Events - Updated to include user_assigned_images
start_btn.click(
start_or_resume,
inputs=[name, email],
outputs=[
state_uid, state_available, state_completed, state_current_step, state_order_idx,
state_round_filename, state_user_assigned_images, # Added state_user_assigned_images
# A imgs
*a_imgs,
# B imgs
*b_imgs,
# Reference
b_ref,
# status & panels
status, eval_panel, thanks_group, group_A, group_B,
# hide name/email
name, email,
# reset selections/inputs
a_sel, b_sel, a_ranking, b_ranking, notes,
# control start page visibility
start_group
]
)
a_next.click(
continue_after_A,
inputs=[name, email, state_uid, state_available, state_completed, state_current_step,
state_order_idx, state_round_filename, state_user_assigned_images, a_ranking],
outputs=[status, group_A, group_B]
)
submit_btn.click(
submit_after_B,
inputs=[name, email, state_uid, state_available, state_completed, state_current_step,
state_order_idx, state_round_filename, state_user_assigned_images, b_ranking, notes],
outputs=[
state_completed, state_current_step, state_order_idx, state_round_filename,
# reload next round images
*a_imgs,
*b_imgs,
b_ref,
status, eval_panel, thanks_group, group_A, group_B,
# reset selections/inputs
a_sel, b_sel, a_ranking, b_ranking, notes
]
)
# Check and display configuration
try:
ensure_paths()
matching_images = get_available_images()
stats = get_global_stats()
# print(f"\n✅ Found {len(matching_images)} matching images across all folders.")
# if matching_images and len(matching_images) <= 10:
# print("Matching images:", matching_images)
# print(f"\n📊 Global Progress:")
# print(f" Total users registered: {stats['num_users']}")
# print(f" Total images assigned: {stats['total_completed']}")
# print(f" Complete cycles: {stats['complete_cycles']}")
# print(f" Current cycle progress: {stats['images_in_current_cycle']}/{stats['total_images']}")
# print(f"\n📊 Configuration: {NUM_IMAGES_TO_RANK} images to rank ({NUM_MODEL_FOLDERS} models + 1 HR reference)")
# print(f"🎯 Target: {TARGET_PER_PERSON} rounds per person")
# print("\nLaunching app...")
demo.queue()
demo.launch()
except FileNotFoundError as e:
print(f"\n❌ ERROR: {e}")
print("\nPlease check your folder configuration and ensure all folders exist with matching images.") |