Spaces:
Runtime error
Runtime error
fracapuano
commited on
Commit
·
02556c2
1
Parent(s):
acbe90b
fix: major code restructuring
Browse files- qa/utils.py +58 -29
qa/utils.py
CHANGED
|
@@ -7,7 +7,7 @@ from langchain.llms import OpenAI
|
|
| 7 |
from langchain.docstore.document import Document
|
| 8 |
from langchain.vectorstores import FAISS, VectorStore
|
| 9 |
import docx2txt
|
| 10 |
-
from typing import List, Dict, Any, Union, Text, Tuple
|
| 11 |
import re
|
| 12 |
from io import BytesIO
|
| 13 |
import streamlit as st
|
|
@@ -15,12 +15,38 @@ from .prompts import STUFF_PROMPT
|
|
| 15 |
from pypdf import PdfReader
|
| 16 |
from openai.error import AuthenticationError
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
class HashDocument(Document):
|
| 19 |
"""A document that uses the page content as the hash."""
|
| 20 |
def __hash__(self):
|
| 21 |
content = self.page_content + "".join(self.metadata[k] for k in self.metadata.keys())
|
| 22 |
return hash(content)
|
| 23 |
|
|
|
|
| 24 |
@st.cache_data
|
| 25 |
def parse_docx(file: BytesIO) -> str:
|
| 26 |
text = docx2txt.process(file)
|
|
@@ -43,7 +69,6 @@ def parse_pdf(file: BytesIO) -> List[str]:
|
|
| 43 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
| 44 |
|
| 45 |
output.append(text)
|
| 46 |
-
|
| 47 |
return output
|
| 48 |
|
| 49 |
|
|
@@ -54,6 +79,19 @@ def parse_txt(file: BytesIO) -> str:
|
|
| 54 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
| 55 |
return text
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
@st.cache_data
|
| 59 |
def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
@@ -61,10 +99,13 @@ def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
| 61 |
Converts a string or frozenset of strings to a list of Documents
|
| 62 |
with metadata.
|
| 63 |
"""
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
elif isinstance(text,
|
|
|
|
|
|
|
|
|
|
| 68 |
# map each page into a document instance
|
| 69 |
page_docs = [HashDocument(page_content=page) for page in text]
|
| 70 |
# Add page numbers as metadata
|
|
@@ -72,52 +113,40 @@ def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
| 72 |
doc.metadata["page"] = i + 1
|
| 73 |
# Split pages into chunks
|
| 74 |
doc_chunks = []
|
| 75 |
-
#
|
| 76 |
-
text_splitter =
|
| 77 |
-
|
| 78 |
-
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
|
| 79 |
-
chunk_overlap=20, # minimal overlap to capture sematic overlap across chunks
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
for doc in page_docs:
|
|
|
|
| 83 |
chunks = text_splitter.split_text(doc.page_content)
|
| 84 |
for i, chunk in enumerate(chunks):
|
| 85 |
# Create a new document for each individual chunk
|
| 86 |
doc = HashDocument(
|
| 87 |
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
|
| 88 |
)
|
| 89 |
-
# Add sources
|
| 90 |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
|
| 91 |
doc_chunks.append(doc)
|
| 92 |
|
| 93 |
return doc_chunks
|
| 94 |
|
| 95 |
-
else:
|
| 96 |
-
raise ValueError("Text must be either a string or a list of strings. Got: {type(text)}")
|
| 97 |
-
|
| 98 |
|
| 99 |
@st.cache_data
|
| 100 |
def embed_docs(_docs: Tuple[Document]) -> VectorStore:
|
| 101 |
"""Embeds a list of Documents and returns a FAISS index"""
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
"Enter your OpenAI API key in the sidebar. You can get a key at https://platform.openai.com/account/api-keys."
|
| 106 |
-
)
|
| 107 |
-
else:
|
| 108 |
-
# Embed the chunks
|
| 109 |
-
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY"))
|
| 110 |
-
index = FAISS.from_documents(list(docs), embeddings)
|
| 111 |
|
| 112 |
-
|
| 113 |
|
| 114 |
@st.cache_data
|
| 115 |
-
def search_docs(_index: VectorStore, query: str) -> List[Document]:
|
| 116 |
"""Searches a FAISS index for similar chunks to the query
|
| 117 |
and returns a list of Documents."""
|
| 118 |
|
| 119 |
# Search for similar chunks
|
| 120 |
-
docs = _index.similarity_search(query, k=
|
| 121 |
return docs
|
| 122 |
|
| 123 |
|
|
|
|
| 7 |
from langchain.docstore.document import Document
|
| 8 |
from langchain.vectorstores import FAISS, VectorStore
|
| 9 |
import docx2txt
|
| 10 |
+
from typing import List, Dict, Any, Union, Text, Tuple, Iterable
|
| 11 |
import re
|
| 12 |
from io import BytesIO
|
| 13 |
import streamlit as st
|
|
|
|
| 15 |
from pypdf import PdfReader
|
| 16 |
from openai.error import AuthenticationError
|
| 17 |
|
| 18 |
+
class PDFFile:
|
| 19 |
+
"""A PDF file class for typing purposes."""
|
| 20 |
+
@classmethod
|
| 21 |
+
def is_pdf(file:Any) -> bool:
|
| 22 |
+
return file.name.endswith(".pdf")
|
| 23 |
+
|
| 24 |
+
class DocxFile:
|
| 25 |
+
"""A Docx file class for typing purposes."""
|
| 26 |
+
@classmethod
|
| 27 |
+
def is_docx(file:Any) -> bool:
|
| 28 |
+
return file.name.endswith(".docx")
|
| 29 |
+
|
| 30 |
+
class TxtFile:
|
| 31 |
+
"""A Txt file class for typing purposes."""
|
| 32 |
+
@classmethod
|
| 33 |
+
def is_txt(file:Any) -> bool:
|
| 34 |
+
return file.name.endswith(".txt")
|
| 35 |
+
|
| 36 |
+
class CodeFile:
|
| 37 |
+
"""A scripting-file class for typing purposes."""
|
| 38 |
+
@classmethod
|
| 39 |
+
def is_code(file:Any) -> bool:
|
| 40 |
+
return file.name.split(".")[1] in [".py", ".json", ".html", ".css", ".md"]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
class HashDocument(Document):
|
| 44 |
"""A document that uses the page content as the hash."""
|
| 45 |
def __hash__(self):
|
| 46 |
content = self.page_content + "".join(self.metadata[k] for k in self.metadata.keys())
|
| 47 |
return hash(content)
|
| 48 |
|
| 49 |
+
|
| 50 |
@st.cache_data
|
| 51 |
def parse_docx(file: BytesIO) -> str:
|
| 52 |
text = docx2txt.process(file)
|
|
|
|
| 69 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
| 70 |
|
| 71 |
output.append(text)
|
|
|
|
| 72 |
return output
|
| 73 |
|
| 74 |
|
|
|
|
| 79 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
| 80 |
return text
|
| 81 |
|
| 82 |
+
@st.cache_data
|
| 83 |
+
def get_text_splitter(
|
| 84 |
+
chunk_size:int=500,
|
| 85 |
+
chunk_overlap:int=50,
|
| 86 |
+
separators:Iterable[Text]= ["\n\n", "\n", ".", "!", "?", ",", " ", ""])->RecursiveCharacterTextSplitter:
|
| 87 |
+
"""Returns a text splitter instance with the given parameters. Cached for performance."""
|
| 88 |
+
# text splitter to split the text into chunks
|
| 89 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 90 |
+
chunk_size=chunk_size, # a limited chunk size ensures smaller chunks and more precise answers
|
| 91 |
+
separators=separators, # a list of separators to split the text on
|
| 92 |
+
chunk_overlap=chunk_overlap, # minimal overlap to capture sematic overlap across chunks
|
| 93 |
+
)
|
| 94 |
+
return text_splitter
|
| 95 |
|
| 96 |
@st.cache_data
|
| 97 |
def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
|
|
| 99 |
Converts a string or frozenset of strings to a list of Documents
|
| 100 |
with metadata.
|
| 101 |
"""
|
| 102 |
+
# sanity check on the input provided
|
| 103 |
+
if not isinstance(text, (str, tuple)):
|
| 104 |
+
raise ValueError("Text must be either a string or a list of strings. Got: {type(text)}")
|
| 105 |
+
elif isinstance(text, str):
|
| 106 |
+
# Take a single string as one page - make it a tuple so that is hashable
|
| 107 |
+
text = (text, )
|
| 108 |
+
if isinstance(text, tuple):
|
| 109 |
# map each page into a document instance
|
| 110 |
page_docs = [HashDocument(page_content=page) for page in text]
|
| 111 |
# Add page numbers as metadata
|
|
|
|
| 113 |
doc.metadata["page"] = i + 1
|
| 114 |
# Split pages into chunks
|
| 115 |
doc_chunks = []
|
| 116 |
+
# Get the text splitter
|
| 117 |
+
text_splitter = get_text_splitter()
|
| 118 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
for doc in page_docs:
|
| 120 |
+
# this splits the page into chunks
|
| 121 |
chunks = text_splitter.split_text(doc.page_content)
|
| 122 |
for i, chunk in enumerate(chunks):
|
| 123 |
# Create a new document for each individual chunk
|
| 124 |
doc = HashDocument(
|
| 125 |
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
|
| 126 |
)
|
| 127 |
+
# Add sources to metadata for retrieval later on
|
| 128 |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
|
| 129 |
doc_chunks.append(doc)
|
| 130 |
|
| 131 |
return doc_chunks
|
| 132 |
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
@st.cache_data
|
| 135 |
def embed_docs(_docs: Tuple[Document]) -> VectorStore:
|
| 136 |
"""Embeds a list of Documents and returns a FAISS index"""
|
| 137 |
+
# Embed the chunks
|
| 138 |
+
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY"))
|
| 139 |
+
index = FAISS.from_documents(list(_docs), embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
return index
|
| 142 |
|
| 143 |
@st.cache_data
|
| 144 |
+
def search_docs(_index: VectorStore, query: str, k:int=5) -> List[Document]:
|
| 145 |
"""Searches a FAISS index for similar chunks to the query
|
| 146 |
and returns a list of Documents."""
|
| 147 |
|
| 148 |
# Search for similar chunks
|
| 149 |
+
docs = _index.similarity_search(query, k=k)
|
| 150 |
return docs
|
| 151 |
|
| 152 |
|