Spaces:
Running
on
T4
Running
on
T4
Commit
·
8cfdd9d
1
Parent(s):
c530e94
fix
Browse files- MobileNetSSD_deploy.caffemodel +0 -3
- MobileNetSSD_deploy.prototxt.txt +0 -1912
- README.md +40 -9
- app.py +27 -72
- inference.py +146 -0
- requirements.txt +3 -2
- utils.py +237 -0
MobileNetSSD_deploy.caffemodel
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:761c86fbae3d8361dd454f7c740a964f62975ed32f4324b8b85994edec30f6af
|
| 3 |
-
size 23147564
|
|
|
|
|
|
|
|
|
|
|
|
MobileNetSSD_deploy.prototxt.txt
DELETED
|
@@ -1,1912 +0,0 @@
|
|
| 1 |
-
name: "MobileNet-SSD"
|
| 2 |
-
input: "data"
|
| 3 |
-
input_shape {
|
| 4 |
-
dim: 1
|
| 5 |
-
dim: 3
|
| 6 |
-
dim: 300
|
| 7 |
-
dim: 300
|
| 8 |
-
}
|
| 9 |
-
layer {
|
| 10 |
-
name: "conv0"
|
| 11 |
-
type: "Convolution"
|
| 12 |
-
bottom: "data"
|
| 13 |
-
top: "conv0"
|
| 14 |
-
param {
|
| 15 |
-
lr_mult: 1.0
|
| 16 |
-
decay_mult: 1.0
|
| 17 |
-
}
|
| 18 |
-
param {
|
| 19 |
-
lr_mult: 2.0
|
| 20 |
-
decay_mult: 0.0
|
| 21 |
-
}
|
| 22 |
-
convolution_param {
|
| 23 |
-
num_output: 32
|
| 24 |
-
pad: 1
|
| 25 |
-
kernel_size: 3
|
| 26 |
-
stride: 2
|
| 27 |
-
weight_filler {
|
| 28 |
-
type: "msra"
|
| 29 |
-
}
|
| 30 |
-
bias_filler {
|
| 31 |
-
type: "constant"
|
| 32 |
-
value: 0.0
|
| 33 |
-
}
|
| 34 |
-
}
|
| 35 |
-
}
|
| 36 |
-
layer {
|
| 37 |
-
name: "conv0/relu"
|
| 38 |
-
type: "ReLU"
|
| 39 |
-
bottom: "conv0"
|
| 40 |
-
top: "conv0"
|
| 41 |
-
}
|
| 42 |
-
layer {
|
| 43 |
-
name: "conv1/dw"
|
| 44 |
-
type: "Convolution"
|
| 45 |
-
bottom: "conv0"
|
| 46 |
-
top: "conv1/dw"
|
| 47 |
-
param {
|
| 48 |
-
lr_mult: 1.0
|
| 49 |
-
decay_mult: 1.0
|
| 50 |
-
}
|
| 51 |
-
param {
|
| 52 |
-
lr_mult: 2.0
|
| 53 |
-
decay_mult: 0.0
|
| 54 |
-
}
|
| 55 |
-
convolution_param {
|
| 56 |
-
num_output: 32
|
| 57 |
-
pad: 1
|
| 58 |
-
kernel_size: 3
|
| 59 |
-
group: 32
|
| 60 |
-
engine: CAFFE
|
| 61 |
-
weight_filler {
|
| 62 |
-
type: "msra"
|
| 63 |
-
}
|
| 64 |
-
bias_filler {
|
| 65 |
-
type: "constant"
|
| 66 |
-
value: 0.0
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
-
}
|
| 70 |
-
layer {
|
| 71 |
-
name: "conv1/dw/relu"
|
| 72 |
-
type: "ReLU"
|
| 73 |
-
bottom: "conv1/dw"
|
| 74 |
-
top: "conv1/dw"
|
| 75 |
-
}
|
| 76 |
-
layer {
|
| 77 |
-
name: "conv1"
|
| 78 |
-
type: "Convolution"
|
| 79 |
-
bottom: "conv1/dw"
|
| 80 |
-
top: "conv1"
|
| 81 |
-
param {
|
| 82 |
-
lr_mult: 1.0
|
| 83 |
-
decay_mult: 1.0
|
| 84 |
-
}
|
| 85 |
-
param {
|
| 86 |
-
lr_mult: 2.0
|
| 87 |
-
decay_mult: 0.0
|
| 88 |
-
}
|
| 89 |
-
convolution_param {
|
| 90 |
-
num_output: 64
|
| 91 |
-
kernel_size: 1
|
| 92 |
-
weight_filler {
|
| 93 |
-
type: "msra"
|
| 94 |
-
}
|
| 95 |
-
bias_filler {
|
| 96 |
-
type: "constant"
|
| 97 |
-
value: 0.0
|
| 98 |
-
}
|
| 99 |
-
}
|
| 100 |
-
}
|
| 101 |
-
layer {
|
| 102 |
-
name: "conv1/relu"
|
| 103 |
-
type: "ReLU"
|
| 104 |
-
bottom: "conv1"
|
| 105 |
-
top: "conv1"
|
| 106 |
-
}
|
| 107 |
-
layer {
|
| 108 |
-
name: "conv2/dw"
|
| 109 |
-
type: "Convolution"
|
| 110 |
-
bottom: "conv1"
|
| 111 |
-
top: "conv2/dw"
|
| 112 |
-
param {
|
| 113 |
-
lr_mult: 1.0
|
| 114 |
-
decay_mult: 1.0
|
| 115 |
-
}
|
| 116 |
-
param {
|
| 117 |
-
lr_mult: 2.0
|
| 118 |
-
decay_mult: 0.0
|
| 119 |
-
}
|
| 120 |
-
convolution_param {
|
| 121 |
-
num_output: 64
|
| 122 |
-
pad: 1
|
| 123 |
-
kernel_size: 3
|
| 124 |
-
stride: 2
|
| 125 |
-
group: 64
|
| 126 |
-
engine: CAFFE
|
| 127 |
-
weight_filler {
|
| 128 |
-
type: "msra"
|
| 129 |
-
}
|
| 130 |
-
bias_filler {
|
| 131 |
-
type: "constant"
|
| 132 |
-
value: 0.0
|
| 133 |
-
}
|
| 134 |
-
}
|
| 135 |
-
}
|
| 136 |
-
layer {
|
| 137 |
-
name: "conv2/dw/relu"
|
| 138 |
-
type: "ReLU"
|
| 139 |
-
bottom: "conv2/dw"
|
| 140 |
-
top: "conv2/dw"
|
| 141 |
-
}
|
| 142 |
-
layer {
|
| 143 |
-
name: "conv2"
|
| 144 |
-
type: "Convolution"
|
| 145 |
-
bottom: "conv2/dw"
|
| 146 |
-
top: "conv2"
|
| 147 |
-
param {
|
| 148 |
-
lr_mult: 1.0
|
| 149 |
-
decay_mult: 1.0
|
| 150 |
-
}
|
| 151 |
-
param {
|
| 152 |
-
lr_mult: 2.0
|
| 153 |
-
decay_mult: 0.0
|
| 154 |
-
}
|
| 155 |
-
convolution_param {
|
| 156 |
-
num_output: 128
|
| 157 |
-
kernel_size: 1
|
| 158 |
-
weight_filler {
|
| 159 |
-
type: "msra"
|
| 160 |
-
}
|
| 161 |
-
bias_filler {
|
| 162 |
-
type: "constant"
|
| 163 |
-
value: 0.0
|
| 164 |
-
}
|
| 165 |
-
}
|
| 166 |
-
}
|
| 167 |
-
layer {
|
| 168 |
-
name: "conv2/relu"
|
| 169 |
-
type: "ReLU"
|
| 170 |
-
bottom: "conv2"
|
| 171 |
-
top: "conv2"
|
| 172 |
-
}
|
| 173 |
-
layer {
|
| 174 |
-
name: "conv3/dw"
|
| 175 |
-
type: "Convolution"
|
| 176 |
-
bottom: "conv2"
|
| 177 |
-
top: "conv3/dw"
|
| 178 |
-
param {
|
| 179 |
-
lr_mult: 1.0
|
| 180 |
-
decay_mult: 1.0
|
| 181 |
-
}
|
| 182 |
-
param {
|
| 183 |
-
lr_mult: 2.0
|
| 184 |
-
decay_mult: 0.0
|
| 185 |
-
}
|
| 186 |
-
convolution_param {
|
| 187 |
-
num_output: 128
|
| 188 |
-
pad: 1
|
| 189 |
-
kernel_size: 3
|
| 190 |
-
group: 128
|
| 191 |
-
engine: CAFFE
|
| 192 |
-
weight_filler {
|
| 193 |
-
type: "msra"
|
| 194 |
-
}
|
| 195 |
-
bias_filler {
|
| 196 |
-
type: "constant"
|
| 197 |
-
value: 0.0
|
| 198 |
-
}
|
| 199 |
-
}
|
| 200 |
-
}
|
| 201 |
-
layer {
|
| 202 |
-
name: "conv3/dw/relu"
|
| 203 |
-
type: "ReLU"
|
| 204 |
-
bottom: "conv3/dw"
|
| 205 |
-
top: "conv3/dw"
|
| 206 |
-
}
|
| 207 |
-
layer {
|
| 208 |
-
name: "conv3"
|
| 209 |
-
type: "Convolution"
|
| 210 |
-
bottom: "conv3/dw"
|
| 211 |
-
top: "conv3"
|
| 212 |
-
param {
|
| 213 |
-
lr_mult: 1.0
|
| 214 |
-
decay_mult: 1.0
|
| 215 |
-
}
|
| 216 |
-
param {
|
| 217 |
-
lr_mult: 2.0
|
| 218 |
-
decay_mult: 0.0
|
| 219 |
-
}
|
| 220 |
-
convolution_param {
|
| 221 |
-
num_output: 128
|
| 222 |
-
kernel_size: 1
|
| 223 |
-
weight_filler {
|
| 224 |
-
type: "msra"
|
| 225 |
-
}
|
| 226 |
-
bias_filler {
|
| 227 |
-
type: "constant"
|
| 228 |
-
value: 0.0
|
| 229 |
-
}
|
| 230 |
-
}
|
| 231 |
-
}
|
| 232 |
-
layer {
|
| 233 |
-
name: "conv3/relu"
|
| 234 |
-
type: "ReLU"
|
| 235 |
-
bottom: "conv3"
|
| 236 |
-
top: "conv3"
|
| 237 |
-
}
|
| 238 |
-
layer {
|
| 239 |
-
name: "conv4/dw"
|
| 240 |
-
type: "Convolution"
|
| 241 |
-
bottom: "conv3"
|
| 242 |
-
top: "conv4/dw"
|
| 243 |
-
param {
|
| 244 |
-
lr_mult: 1.0
|
| 245 |
-
decay_mult: 1.0
|
| 246 |
-
}
|
| 247 |
-
param {
|
| 248 |
-
lr_mult: 2.0
|
| 249 |
-
decay_mult: 0.0
|
| 250 |
-
}
|
| 251 |
-
convolution_param {
|
| 252 |
-
num_output: 128
|
| 253 |
-
pad: 1
|
| 254 |
-
kernel_size: 3
|
| 255 |
-
stride: 2
|
| 256 |
-
group: 128
|
| 257 |
-
engine: CAFFE
|
| 258 |
-
weight_filler {
|
| 259 |
-
type: "msra"
|
| 260 |
-
}
|
| 261 |
-
bias_filler {
|
| 262 |
-
type: "constant"
|
| 263 |
-
value: 0.0
|
| 264 |
-
}
|
| 265 |
-
}
|
| 266 |
-
}
|
| 267 |
-
layer {
|
| 268 |
-
name: "conv4/dw/relu"
|
| 269 |
-
type: "ReLU"
|
| 270 |
-
bottom: "conv4/dw"
|
| 271 |
-
top: "conv4/dw"
|
| 272 |
-
}
|
| 273 |
-
layer {
|
| 274 |
-
name: "conv4"
|
| 275 |
-
type: "Convolution"
|
| 276 |
-
bottom: "conv4/dw"
|
| 277 |
-
top: "conv4"
|
| 278 |
-
param {
|
| 279 |
-
lr_mult: 1.0
|
| 280 |
-
decay_mult: 1.0
|
| 281 |
-
}
|
| 282 |
-
param {
|
| 283 |
-
lr_mult: 2.0
|
| 284 |
-
decay_mult: 0.0
|
| 285 |
-
}
|
| 286 |
-
convolution_param {
|
| 287 |
-
num_output: 256
|
| 288 |
-
kernel_size: 1
|
| 289 |
-
weight_filler {
|
| 290 |
-
type: "msra"
|
| 291 |
-
}
|
| 292 |
-
bias_filler {
|
| 293 |
-
type: "constant"
|
| 294 |
-
value: 0.0
|
| 295 |
-
}
|
| 296 |
-
}
|
| 297 |
-
}
|
| 298 |
-
layer {
|
| 299 |
-
name: "conv4/relu"
|
| 300 |
-
type: "ReLU"
|
| 301 |
-
bottom: "conv4"
|
| 302 |
-
top: "conv4"
|
| 303 |
-
}
|
| 304 |
-
layer {
|
| 305 |
-
name: "conv5/dw"
|
| 306 |
-
type: "Convolution"
|
| 307 |
-
bottom: "conv4"
|
| 308 |
-
top: "conv5/dw"
|
| 309 |
-
param {
|
| 310 |
-
lr_mult: 1.0
|
| 311 |
-
decay_mult: 1.0
|
| 312 |
-
}
|
| 313 |
-
param {
|
| 314 |
-
lr_mult: 2.0
|
| 315 |
-
decay_mult: 0.0
|
| 316 |
-
}
|
| 317 |
-
convolution_param {
|
| 318 |
-
num_output: 256
|
| 319 |
-
pad: 1
|
| 320 |
-
kernel_size: 3
|
| 321 |
-
group: 256
|
| 322 |
-
engine: CAFFE
|
| 323 |
-
weight_filler {
|
| 324 |
-
type: "msra"
|
| 325 |
-
}
|
| 326 |
-
bias_filler {
|
| 327 |
-
type: "constant"
|
| 328 |
-
value: 0.0
|
| 329 |
-
}
|
| 330 |
-
}
|
| 331 |
-
}
|
| 332 |
-
layer {
|
| 333 |
-
name: "conv5/dw/relu"
|
| 334 |
-
type: "ReLU"
|
| 335 |
-
bottom: "conv5/dw"
|
| 336 |
-
top: "conv5/dw"
|
| 337 |
-
}
|
| 338 |
-
layer {
|
| 339 |
-
name: "conv5"
|
| 340 |
-
type: "Convolution"
|
| 341 |
-
bottom: "conv5/dw"
|
| 342 |
-
top: "conv5"
|
| 343 |
-
param {
|
| 344 |
-
lr_mult: 1.0
|
| 345 |
-
decay_mult: 1.0
|
| 346 |
-
}
|
| 347 |
-
param {
|
| 348 |
-
lr_mult: 2.0
|
| 349 |
-
decay_mult: 0.0
|
| 350 |
-
}
|
| 351 |
-
convolution_param {
|
| 352 |
-
num_output: 256
|
| 353 |
-
kernel_size: 1
|
| 354 |
-
weight_filler {
|
| 355 |
-
type: "msra"
|
| 356 |
-
}
|
| 357 |
-
bias_filler {
|
| 358 |
-
type: "constant"
|
| 359 |
-
value: 0.0
|
| 360 |
-
}
|
| 361 |
-
}
|
| 362 |
-
}
|
| 363 |
-
layer {
|
| 364 |
-
name: "conv5/relu"
|
| 365 |
-
type: "ReLU"
|
| 366 |
-
bottom: "conv5"
|
| 367 |
-
top: "conv5"
|
| 368 |
-
}
|
| 369 |
-
layer {
|
| 370 |
-
name: "conv6/dw"
|
| 371 |
-
type: "Convolution"
|
| 372 |
-
bottom: "conv5"
|
| 373 |
-
top: "conv6/dw"
|
| 374 |
-
param {
|
| 375 |
-
lr_mult: 1.0
|
| 376 |
-
decay_mult: 1.0
|
| 377 |
-
}
|
| 378 |
-
param {
|
| 379 |
-
lr_mult: 2.0
|
| 380 |
-
decay_mult: 0.0
|
| 381 |
-
}
|
| 382 |
-
convolution_param {
|
| 383 |
-
num_output: 256
|
| 384 |
-
pad: 1
|
| 385 |
-
kernel_size: 3
|
| 386 |
-
stride: 2
|
| 387 |
-
group: 256
|
| 388 |
-
engine: CAFFE
|
| 389 |
-
weight_filler {
|
| 390 |
-
type: "msra"
|
| 391 |
-
}
|
| 392 |
-
bias_filler {
|
| 393 |
-
type: "constant"
|
| 394 |
-
value: 0.0
|
| 395 |
-
}
|
| 396 |
-
}
|
| 397 |
-
}
|
| 398 |
-
layer {
|
| 399 |
-
name: "conv6/dw/relu"
|
| 400 |
-
type: "ReLU"
|
| 401 |
-
bottom: "conv6/dw"
|
| 402 |
-
top: "conv6/dw"
|
| 403 |
-
}
|
| 404 |
-
layer {
|
| 405 |
-
name: "conv6"
|
| 406 |
-
type: "Convolution"
|
| 407 |
-
bottom: "conv6/dw"
|
| 408 |
-
top: "conv6"
|
| 409 |
-
param {
|
| 410 |
-
lr_mult: 1.0
|
| 411 |
-
decay_mult: 1.0
|
| 412 |
-
}
|
| 413 |
-
param {
|
| 414 |
-
lr_mult: 2.0
|
| 415 |
-
decay_mult: 0.0
|
| 416 |
-
}
|
| 417 |
-
convolution_param {
|
| 418 |
-
num_output: 512
|
| 419 |
-
kernel_size: 1
|
| 420 |
-
weight_filler {
|
| 421 |
-
type: "msra"
|
| 422 |
-
}
|
| 423 |
-
bias_filler {
|
| 424 |
-
type: "constant"
|
| 425 |
-
value: 0.0
|
| 426 |
-
}
|
| 427 |
-
}
|
| 428 |
-
}
|
| 429 |
-
layer {
|
| 430 |
-
name: "conv6/relu"
|
| 431 |
-
type: "ReLU"
|
| 432 |
-
bottom: "conv6"
|
| 433 |
-
top: "conv6"
|
| 434 |
-
}
|
| 435 |
-
layer {
|
| 436 |
-
name: "conv7/dw"
|
| 437 |
-
type: "Convolution"
|
| 438 |
-
bottom: "conv6"
|
| 439 |
-
top: "conv7/dw"
|
| 440 |
-
param {
|
| 441 |
-
lr_mult: 1.0
|
| 442 |
-
decay_mult: 1.0
|
| 443 |
-
}
|
| 444 |
-
param {
|
| 445 |
-
lr_mult: 2.0
|
| 446 |
-
decay_mult: 0.0
|
| 447 |
-
}
|
| 448 |
-
convolution_param {
|
| 449 |
-
num_output: 512
|
| 450 |
-
pad: 1
|
| 451 |
-
kernel_size: 3
|
| 452 |
-
group: 512
|
| 453 |
-
engine: CAFFE
|
| 454 |
-
weight_filler {
|
| 455 |
-
type: "msra"
|
| 456 |
-
}
|
| 457 |
-
bias_filler {
|
| 458 |
-
type: "constant"
|
| 459 |
-
value: 0.0
|
| 460 |
-
}
|
| 461 |
-
}
|
| 462 |
-
}
|
| 463 |
-
layer {
|
| 464 |
-
name: "conv7/dw/relu"
|
| 465 |
-
type: "ReLU"
|
| 466 |
-
bottom: "conv7/dw"
|
| 467 |
-
top: "conv7/dw"
|
| 468 |
-
}
|
| 469 |
-
layer {
|
| 470 |
-
name: "conv7"
|
| 471 |
-
type: "Convolution"
|
| 472 |
-
bottom: "conv7/dw"
|
| 473 |
-
top: "conv7"
|
| 474 |
-
param {
|
| 475 |
-
lr_mult: 1.0
|
| 476 |
-
decay_mult: 1.0
|
| 477 |
-
}
|
| 478 |
-
param {
|
| 479 |
-
lr_mult: 2.0
|
| 480 |
-
decay_mult: 0.0
|
| 481 |
-
}
|
| 482 |
-
convolution_param {
|
| 483 |
-
num_output: 512
|
| 484 |
-
kernel_size: 1
|
| 485 |
-
weight_filler {
|
| 486 |
-
type: "msra"
|
| 487 |
-
}
|
| 488 |
-
bias_filler {
|
| 489 |
-
type: "constant"
|
| 490 |
-
value: 0.0
|
| 491 |
-
}
|
| 492 |
-
}
|
| 493 |
-
}
|
| 494 |
-
layer {
|
| 495 |
-
name: "conv7/relu"
|
| 496 |
-
type: "ReLU"
|
| 497 |
-
bottom: "conv7"
|
| 498 |
-
top: "conv7"
|
| 499 |
-
}
|
| 500 |
-
layer {
|
| 501 |
-
name: "conv8/dw"
|
| 502 |
-
type: "Convolution"
|
| 503 |
-
bottom: "conv7"
|
| 504 |
-
top: "conv8/dw"
|
| 505 |
-
param {
|
| 506 |
-
lr_mult: 1.0
|
| 507 |
-
decay_mult: 1.0
|
| 508 |
-
}
|
| 509 |
-
param {
|
| 510 |
-
lr_mult: 2.0
|
| 511 |
-
decay_mult: 0.0
|
| 512 |
-
}
|
| 513 |
-
convolution_param {
|
| 514 |
-
num_output: 512
|
| 515 |
-
pad: 1
|
| 516 |
-
kernel_size: 3
|
| 517 |
-
group: 512
|
| 518 |
-
engine: CAFFE
|
| 519 |
-
weight_filler {
|
| 520 |
-
type: "msra"
|
| 521 |
-
}
|
| 522 |
-
bias_filler {
|
| 523 |
-
type: "constant"
|
| 524 |
-
value: 0.0
|
| 525 |
-
}
|
| 526 |
-
}
|
| 527 |
-
}
|
| 528 |
-
layer {
|
| 529 |
-
name: "conv8/dw/relu"
|
| 530 |
-
type: "ReLU"
|
| 531 |
-
bottom: "conv8/dw"
|
| 532 |
-
top: "conv8/dw"
|
| 533 |
-
}
|
| 534 |
-
layer {
|
| 535 |
-
name: "conv8"
|
| 536 |
-
type: "Convolution"
|
| 537 |
-
bottom: "conv8/dw"
|
| 538 |
-
top: "conv8"
|
| 539 |
-
param {
|
| 540 |
-
lr_mult: 1.0
|
| 541 |
-
decay_mult: 1.0
|
| 542 |
-
}
|
| 543 |
-
param {
|
| 544 |
-
lr_mult: 2.0
|
| 545 |
-
decay_mult: 0.0
|
| 546 |
-
}
|
| 547 |
-
convolution_param {
|
| 548 |
-
num_output: 512
|
| 549 |
-
kernel_size: 1
|
| 550 |
-
weight_filler {
|
| 551 |
-
type: "msra"
|
| 552 |
-
}
|
| 553 |
-
bias_filler {
|
| 554 |
-
type: "constant"
|
| 555 |
-
value: 0.0
|
| 556 |
-
}
|
| 557 |
-
}
|
| 558 |
-
}
|
| 559 |
-
layer {
|
| 560 |
-
name: "conv8/relu"
|
| 561 |
-
type: "ReLU"
|
| 562 |
-
bottom: "conv8"
|
| 563 |
-
top: "conv8"
|
| 564 |
-
}
|
| 565 |
-
layer {
|
| 566 |
-
name: "conv9/dw"
|
| 567 |
-
type: "Convolution"
|
| 568 |
-
bottom: "conv8"
|
| 569 |
-
top: "conv9/dw"
|
| 570 |
-
param {
|
| 571 |
-
lr_mult: 1.0
|
| 572 |
-
decay_mult: 1.0
|
| 573 |
-
}
|
| 574 |
-
param {
|
| 575 |
-
lr_mult: 2.0
|
| 576 |
-
decay_mult: 0.0
|
| 577 |
-
}
|
| 578 |
-
convolution_param {
|
| 579 |
-
num_output: 512
|
| 580 |
-
pad: 1
|
| 581 |
-
kernel_size: 3
|
| 582 |
-
group: 512
|
| 583 |
-
engine: CAFFE
|
| 584 |
-
weight_filler {
|
| 585 |
-
type: "msra"
|
| 586 |
-
}
|
| 587 |
-
bias_filler {
|
| 588 |
-
type: "constant"
|
| 589 |
-
value: 0.0
|
| 590 |
-
}
|
| 591 |
-
}
|
| 592 |
-
}
|
| 593 |
-
layer {
|
| 594 |
-
name: "conv9/dw/relu"
|
| 595 |
-
type: "ReLU"
|
| 596 |
-
bottom: "conv9/dw"
|
| 597 |
-
top: "conv9/dw"
|
| 598 |
-
}
|
| 599 |
-
layer {
|
| 600 |
-
name: "conv9"
|
| 601 |
-
type: "Convolution"
|
| 602 |
-
bottom: "conv9/dw"
|
| 603 |
-
top: "conv9"
|
| 604 |
-
param {
|
| 605 |
-
lr_mult: 1.0
|
| 606 |
-
decay_mult: 1.0
|
| 607 |
-
}
|
| 608 |
-
param {
|
| 609 |
-
lr_mult: 2.0
|
| 610 |
-
decay_mult: 0.0
|
| 611 |
-
}
|
| 612 |
-
convolution_param {
|
| 613 |
-
num_output: 512
|
| 614 |
-
kernel_size: 1
|
| 615 |
-
weight_filler {
|
| 616 |
-
type: "msra"
|
| 617 |
-
}
|
| 618 |
-
bias_filler {
|
| 619 |
-
type: "constant"
|
| 620 |
-
value: 0.0
|
| 621 |
-
}
|
| 622 |
-
}
|
| 623 |
-
}
|
| 624 |
-
layer {
|
| 625 |
-
name: "conv9/relu"
|
| 626 |
-
type: "ReLU"
|
| 627 |
-
bottom: "conv9"
|
| 628 |
-
top: "conv9"
|
| 629 |
-
}
|
| 630 |
-
layer {
|
| 631 |
-
name: "conv10/dw"
|
| 632 |
-
type: "Convolution"
|
| 633 |
-
bottom: "conv9"
|
| 634 |
-
top: "conv10/dw"
|
| 635 |
-
param {
|
| 636 |
-
lr_mult: 1.0
|
| 637 |
-
decay_mult: 1.0
|
| 638 |
-
}
|
| 639 |
-
param {
|
| 640 |
-
lr_mult: 2.0
|
| 641 |
-
decay_mult: 0.0
|
| 642 |
-
}
|
| 643 |
-
convolution_param {
|
| 644 |
-
num_output: 512
|
| 645 |
-
pad: 1
|
| 646 |
-
kernel_size: 3
|
| 647 |
-
group: 512
|
| 648 |
-
engine: CAFFE
|
| 649 |
-
weight_filler {
|
| 650 |
-
type: "msra"
|
| 651 |
-
}
|
| 652 |
-
bias_filler {
|
| 653 |
-
type: "constant"
|
| 654 |
-
value: 0.0
|
| 655 |
-
}
|
| 656 |
-
}
|
| 657 |
-
}
|
| 658 |
-
layer {
|
| 659 |
-
name: "conv10/dw/relu"
|
| 660 |
-
type: "ReLU"
|
| 661 |
-
bottom: "conv10/dw"
|
| 662 |
-
top: "conv10/dw"
|
| 663 |
-
}
|
| 664 |
-
layer {
|
| 665 |
-
name: "conv10"
|
| 666 |
-
type: "Convolution"
|
| 667 |
-
bottom: "conv10/dw"
|
| 668 |
-
top: "conv10"
|
| 669 |
-
param {
|
| 670 |
-
lr_mult: 1.0
|
| 671 |
-
decay_mult: 1.0
|
| 672 |
-
}
|
| 673 |
-
param {
|
| 674 |
-
lr_mult: 2.0
|
| 675 |
-
decay_mult: 0.0
|
| 676 |
-
}
|
| 677 |
-
convolution_param {
|
| 678 |
-
num_output: 512
|
| 679 |
-
kernel_size: 1
|
| 680 |
-
weight_filler {
|
| 681 |
-
type: "msra"
|
| 682 |
-
}
|
| 683 |
-
bias_filler {
|
| 684 |
-
type: "constant"
|
| 685 |
-
value: 0.0
|
| 686 |
-
}
|
| 687 |
-
}
|
| 688 |
-
}
|
| 689 |
-
layer {
|
| 690 |
-
name: "conv10/relu"
|
| 691 |
-
type: "ReLU"
|
| 692 |
-
bottom: "conv10"
|
| 693 |
-
top: "conv10"
|
| 694 |
-
}
|
| 695 |
-
layer {
|
| 696 |
-
name: "conv11/dw"
|
| 697 |
-
type: "Convolution"
|
| 698 |
-
bottom: "conv10"
|
| 699 |
-
top: "conv11/dw"
|
| 700 |
-
param {
|
| 701 |
-
lr_mult: 1.0
|
| 702 |
-
decay_mult: 1.0
|
| 703 |
-
}
|
| 704 |
-
param {
|
| 705 |
-
lr_mult: 2.0
|
| 706 |
-
decay_mult: 0.0
|
| 707 |
-
}
|
| 708 |
-
convolution_param {
|
| 709 |
-
num_output: 512
|
| 710 |
-
pad: 1
|
| 711 |
-
kernel_size: 3
|
| 712 |
-
group: 512
|
| 713 |
-
engine: CAFFE
|
| 714 |
-
weight_filler {
|
| 715 |
-
type: "msra"
|
| 716 |
-
}
|
| 717 |
-
bias_filler {
|
| 718 |
-
type: "constant"
|
| 719 |
-
value: 0.0
|
| 720 |
-
}
|
| 721 |
-
}
|
| 722 |
-
}
|
| 723 |
-
layer {
|
| 724 |
-
name: "conv11/dw/relu"
|
| 725 |
-
type: "ReLU"
|
| 726 |
-
bottom: "conv11/dw"
|
| 727 |
-
top: "conv11/dw"
|
| 728 |
-
}
|
| 729 |
-
layer {
|
| 730 |
-
name: "conv11"
|
| 731 |
-
type: "Convolution"
|
| 732 |
-
bottom: "conv11/dw"
|
| 733 |
-
top: "conv11"
|
| 734 |
-
param {
|
| 735 |
-
lr_mult: 1.0
|
| 736 |
-
decay_mult: 1.0
|
| 737 |
-
}
|
| 738 |
-
param {
|
| 739 |
-
lr_mult: 2.0
|
| 740 |
-
decay_mult: 0.0
|
| 741 |
-
}
|
| 742 |
-
convolution_param {
|
| 743 |
-
num_output: 512
|
| 744 |
-
kernel_size: 1
|
| 745 |
-
weight_filler {
|
| 746 |
-
type: "msra"
|
| 747 |
-
}
|
| 748 |
-
bias_filler {
|
| 749 |
-
type: "constant"
|
| 750 |
-
value: 0.0
|
| 751 |
-
}
|
| 752 |
-
}
|
| 753 |
-
}
|
| 754 |
-
layer {
|
| 755 |
-
name: "conv11/relu"
|
| 756 |
-
type: "ReLU"
|
| 757 |
-
bottom: "conv11"
|
| 758 |
-
top: "conv11"
|
| 759 |
-
}
|
| 760 |
-
layer {
|
| 761 |
-
name: "conv12/dw"
|
| 762 |
-
type: "Convolution"
|
| 763 |
-
bottom: "conv11"
|
| 764 |
-
top: "conv12/dw"
|
| 765 |
-
param {
|
| 766 |
-
lr_mult: 1.0
|
| 767 |
-
decay_mult: 1.0
|
| 768 |
-
}
|
| 769 |
-
param {
|
| 770 |
-
lr_mult: 2.0
|
| 771 |
-
decay_mult: 0.0
|
| 772 |
-
}
|
| 773 |
-
convolution_param {
|
| 774 |
-
num_output: 512
|
| 775 |
-
pad: 1
|
| 776 |
-
kernel_size: 3
|
| 777 |
-
stride: 2
|
| 778 |
-
group: 512
|
| 779 |
-
engine: CAFFE
|
| 780 |
-
weight_filler {
|
| 781 |
-
type: "msra"
|
| 782 |
-
}
|
| 783 |
-
bias_filler {
|
| 784 |
-
type: "constant"
|
| 785 |
-
value: 0.0
|
| 786 |
-
}
|
| 787 |
-
}
|
| 788 |
-
}
|
| 789 |
-
layer {
|
| 790 |
-
name: "conv12/dw/relu"
|
| 791 |
-
type: "ReLU"
|
| 792 |
-
bottom: "conv12/dw"
|
| 793 |
-
top: "conv12/dw"
|
| 794 |
-
}
|
| 795 |
-
layer {
|
| 796 |
-
name: "conv12"
|
| 797 |
-
type: "Convolution"
|
| 798 |
-
bottom: "conv12/dw"
|
| 799 |
-
top: "conv12"
|
| 800 |
-
param {
|
| 801 |
-
lr_mult: 1.0
|
| 802 |
-
decay_mult: 1.0
|
| 803 |
-
}
|
| 804 |
-
param {
|
| 805 |
-
lr_mult: 2.0
|
| 806 |
-
decay_mult: 0.0
|
| 807 |
-
}
|
| 808 |
-
convolution_param {
|
| 809 |
-
num_output: 1024
|
| 810 |
-
kernel_size: 1
|
| 811 |
-
weight_filler {
|
| 812 |
-
type: "msra"
|
| 813 |
-
}
|
| 814 |
-
bias_filler {
|
| 815 |
-
type: "constant"
|
| 816 |
-
value: 0.0
|
| 817 |
-
}
|
| 818 |
-
}
|
| 819 |
-
}
|
| 820 |
-
layer {
|
| 821 |
-
name: "conv12/relu"
|
| 822 |
-
type: "ReLU"
|
| 823 |
-
bottom: "conv12"
|
| 824 |
-
top: "conv12"
|
| 825 |
-
}
|
| 826 |
-
layer {
|
| 827 |
-
name: "conv13/dw"
|
| 828 |
-
type: "Convolution"
|
| 829 |
-
bottom: "conv12"
|
| 830 |
-
top: "conv13/dw"
|
| 831 |
-
param {
|
| 832 |
-
lr_mult: 1.0
|
| 833 |
-
decay_mult: 1.0
|
| 834 |
-
}
|
| 835 |
-
param {
|
| 836 |
-
lr_mult: 2.0
|
| 837 |
-
decay_mult: 0.0
|
| 838 |
-
}
|
| 839 |
-
convolution_param {
|
| 840 |
-
num_output: 1024
|
| 841 |
-
pad: 1
|
| 842 |
-
kernel_size: 3
|
| 843 |
-
group: 1024
|
| 844 |
-
engine: CAFFE
|
| 845 |
-
weight_filler {
|
| 846 |
-
type: "msra"
|
| 847 |
-
}
|
| 848 |
-
bias_filler {
|
| 849 |
-
type: "constant"
|
| 850 |
-
value: 0.0
|
| 851 |
-
}
|
| 852 |
-
}
|
| 853 |
-
}
|
| 854 |
-
layer {
|
| 855 |
-
name: "conv13/dw/relu"
|
| 856 |
-
type: "ReLU"
|
| 857 |
-
bottom: "conv13/dw"
|
| 858 |
-
top: "conv13/dw"
|
| 859 |
-
}
|
| 860 |
-
layer {
|
| 861 |
-
name: "conv13"
|
| 862 |
-
type: "Convolution"
|
| 863 |
-
bottom: "conv13/dw"
|
| 864 |
-
top: "conv13"
|
| 865 |
-
param {
|
| 866 |
-
lr_mult: 1.0
|
| 867 |
-
decay_mult: 1.0
|
| 868 |
-
}
|
| 869 |
-
param {
|
| 870 |
-
lr_mult: 2.0
|
| 871 |
-
decay_mult: 0.0
|
| 872 |
-
}
|
| 873 |
-
convolution_param {
|
| 874 |
-
num_output: 1024
|
| 875 |
-
kernel_size: 1
|
| 876 |
-
weight_filler {
|
| 877 |
-
type: "msra"
|
| 878 |
-
}
|
| 879 |
-
bias_filler {
|
| 880 |
-
type: "constant"
|
| 881 |
-
value: 0.0
|
| 882 |
-
}
|
| 883 |
-
}
|
| 884 |
-
}
|
| 885 |
-
layer {
|
| 886 |
-
name: "conv13/relu"
|
| 887 |
-
type: "ReLU"
|
| 888 |
-
bottom: "conv13"
|
| 889 |
-
top: "conv13"
|
| 890 |
-
}
|
| 891 |
-
layer {
|
| 892 |
-
name: "conv14_1"
|
| 893 |
-
type: "Convolution"
|
| 894 |
-
bottom: "conv13"
|
| 895 |
-
top: "conv14_1"
|
| 896 |
-
param {
|
| 897 |
-
lr_mult: 1.0
|
| 898 |
-
decay_mult: 1.0
|
| 899 |
-
}
|
| 900 |
-
param {
|
| 901 |
-
lr_mult: 2.0
|
| 902 |
-
decay_mult: 0.0
|
| 903 |
-
}
|
| 904 |
-
convolution_param {
|
| 905 |
-
num_output: 256
|
| 906 |
-
kernel_size: 1
|
| 907 |
-
weight_filler {
|
| 908 |
-
type: "msra"
|
| 909 |
-
}
|
| 910 |
-
bias_filler {
|
| 911 |
-
type: "constant"
|
| 912 |
-
value: 0.0
|
| 913 |
-
}
|
| 914 |
-
}
|
| 915 |
-
}
|
| 916 |
-
layer {
|
| 917 |
-
name: "conv14_1/relu"
|
| 918 |
-
type: "ReLU"
|
| 919 |
-
bottom: "conv14_1"
|
| 920 |
-
top: "conv14_1"
|
| 921 |
-
}
|
| 922 |
-
layer {
|
| 923 |
-
name: "conv14_2"
|
| 924 |
-
type: "Convolution"
|
| 925 |
-
bottom: "conv14_1"
|
| 926 |
-
top: "conv14_2"
|
| 927 |
-
param {
|
| 928 |
-
lr_mult: 1.0
|
| 929 |
-
decay_mult: 1.0
|
| 930 |
-
}
|
| 931 |
-
param {
|
| 932 |
-
lr_mult: 2.0
|
| 933 |
-
decay_mult: 0.0
|
| 934 |
-
}
|
| 935 |
-
convolution_param {
|
| 936 |
-
num_output: 512
|
| 937 |
-
pad: 1
|
| 938 |
-
kernel_size: 3
|
| 939 |
-
stride: 2
|
| 940 |
-
weight_filler {
|
| 941 |
-
type: "msra"
|
| 942 |
-
}
|
| 943 |
-
bias_filler {
|
| 944 |
-
type: "constant"
|
| 945 |
-
value: 0.0
|
| 946 |
-
}
|
| 947 |
-
}
|
| 948 |
-
}
|
| 949 |
-
layer {
|
| 950 |
-
name: "conv14_2/relu"
|
| 951 |
-
type: "ReLU"
|
| 952 |
-
bottom: "conv14_2"
|
| 953 |
-
top: "conv14_2"
|
| 954 |
-
}
|
| 955 |
-
layer {
|
| 956 |
-
name: "conv15_1"
|
| 957 |
-
type: "Convolution"
|
| 958 |
-
bottom: "conv14_2"
|
| 959 |
-
top: "conv15_1"
|
| 960 |
-
param {
|
| 961 |
-
lr_mult: 1.0
|
| 962 |
-
decay_mult: 1.0
|
| 963 |
-
}
|
| 964 |
-
param {
|
| 965 |
-
lr_mult: 2.0
|
| 966 |
-
decay_mult: 0.0
|
| 967 |
-
}
|
| 968 |
-
convolution_param {
|
| 969 |
-
num_output: 128
|
| 970 |
-
kernel_size: 1
|
| 971 |
-
weight_filler {
|
| 972 |
-
type: "msra"
|
| 973 |
-
}
|
| 974 |
-
bias_filler {
|
| 975 |
-
type: "constant"
|
| 976 |
-
value: 0.0
|
| 977 |
-
}
|
| 978 |
-
}
|
| 979 |
-
}
|
| 980 |
-
layer {
|
| 981 |
-
name: "conv15_1/relu"
|
| 982 |
-
type: "ReLU"
|
| 983 |
-
bottom: "conv15_1"
|
| 984 |
-
top: "conv15_1"
|
| 985 |
-
}
|
| 986 |
-
layer {
|
| 987 |
-
name: "conv15_2"
|
| 988 |
-
type: "Convolution"
|
| 989 |
-
bottom: "conv15_1"
|
| 990 |
-
top: "conv15_2"
|
| 991 |
-
param {
|
| 992 |
-
lr_mult: 1.0
|
| 993 |
-
decay_mult: 1.0
|
| 994 |
-
}
|
| 995 |
-
param {
|
| 996 |
-
lr_mult: 2.0
|
| 997 |
-
decay_mult: 0.0
|
| 998 |
-
}
|
| 999 |
-
convolution_param {
|
| 1000 |
-
num_output: 256
|
| 1001 |
-
pad: 1
|
| 1002 |
-
kernel_size: 3
|
| 1003 |
-
stride: 2
|
| 1004 |
-
weight_filler {
|
| 1005 |
-
type: "msra"
|
| 1006 |
-
}
|
| 1007 |
-
bias_filler {
|
| 1008 |
-
type: "constant"
|
| 1009 |
-
value: 0.0
|
| 1010 |
-
}
|
| 1011 |
-
}
|
| 1012 |
-
}
|
| 1013 |
-
layer {
|
| 1014 |
-
name: "conv15_2/relu"
|
| 1015 |
-
type: "ReLU"
|
| 1016 |
-
bottom: "conv15_2"
|
| 1017 |
-
top: "conv15_2"
|
| 1018 |
-
}
|
| 1019 |
-
layer {
|
| 1020 |
-
name: "conv16_1"
|
| 1021 |
-
type: "Convolution"
|
| 1022 |
-
bottom: "conv15_2"
|
| 1023 |
-
top: "conv16_1"
|
| 1024 |
-
param {
|
| 1025 |
-
lr_mult: 1.0
|
| 1026 |
-
decay_mult: 1.0
|
| 1027 |
-
}
|
| 1028 |
-
param {
|
| 1029 |
-
lr_mult: 2.0
|
| 1030 |
-
decay_mult: 0.0
|
| 1031 |
-
}
|
| 1032 |
-
convolution_param {
|
| 1033 |
-
num_output: 128
|
| 1034 |
-
kernel_size: 1
|
| 1035 |
-
weight_filler {
|
| 1036 |
-
type: "msra"
|
| 1037 |
-
}
|
| 1038 |
-
bias_filler {
|
| 1039 |
-
type: "constant"
|
| 1040 |
-
value: 0.0
|
| 1041 |
-
}
|
| 1042 |
-
}
|
| 1043 |
-
}
|
| 1044 |
-
layer {
|
| 1045 |
-
name: "conv16_1/relu"
|
| 1046 |
-
type: "ReLU"
|
| 1047 |
-
bottom: "conv16_1"
|
| 1048 |
-
top: "conv16_1"
|
| 1049 |
-
}
|
| 1050 |
-
layer {
|
| 1051 |
-
name: "conv16_2"
|
| 1052 |
-
type: "Convolution"
|
| 1053 |
-
bottom: "conv16_1"
|
| 1054 |
-
top: "conv16_2"
|
| 1055 |
-
param {
|
| 1056 |
-
lr_mult: 1.0
|
| 1057 |
-
decay_mult: 1.0
|
| 1058 |
-
}
|
| 1059 |
-
param {
|
| 1060 |
-
lr_mult: 2.0
|
| 1061 |
-
decay_mult: 0.0
|
| 1062 |
-
}
|
| 1063 |
-
convolution_param {
|
| 1064 |
-
num_output: 256
|
| 1065 |
-
pad: 1
|
| 1066 |
-
kernel_size: 3
|
| 1067 |
-
stride: 2
|
| 1068 |
-
weight_filler {
|
| 1069 |
-
type: "msra"
|
| 1070 |
-
}
|
| 1071 |
-
bias_filler {
|
| 1072 |
-
type: "constant"
|
| 1073 |
-
value: 0.0
|
| 1074 |
-
}
|
| 1075 |
-
}
|
| 1076 |
-
}
|
| 1077 |
-
layer {
|
| 1078 |
-
name: "conv16_2/relu"
|
| 1079 |
-
type: "ReLU"
|
| 1080 |
-
bottom: "conv16_2"
|
| 1081 |
-
top: "conv16_2"
|
| 1082 |
-
}
|
| 1083 |
-
layer {
|
| 1084 |
-
name: "conv17_1"
|
| 1085 |
-
type: "Convolution"
|
| 1086 |
-
bottom: "conv16_2"
|
| 1087 |
-
top: "conv17_1"
|
| 1088 |
-
param {
|
| 1089 |
-
lr_mult: 1.0
|
| 1090 |
-
decay_mult: 1.0
|
| 1091 |
-
}
|
| 1092 |
-
param {
|
| 1093 |
-
lr_mult: 2.0
|
| 1094 |
-
decay_mult: 0.0
|
| 1095 |
-
}
|
| 1096 |
-
convolution_param {
|
| 1097 |
-
num_output: 64
|
| 1098 |
-
kernel_size: 1
|
| 1099 |
-
weight_filler {
|
| 1100 |
-
type: "msra"
|
| 1101 |
-
}
|
| 1102 |
-
bias_filler {
|
| 1103 |
-
type: "constant"
|
| 1104 |
-
value: 0.0
|
| 1105 |
-
}
|
| 1106 |
-
}
|
| 1107 |
-
}
|
| 1108 |
-
layer {
|
| 1109 |
-
name: "conv17_1/relu"
|
| 1110 |
-
type: "ReLU"
|
| 1111 |
-
bottom: "conv17_1"
|
| 1112 |
-
top: "conv17_1"
|
| 1113 |
-
}
|
| 1114 |
-
layer {
|
| 1115 |
-
name: "conv17_2"
|
| 1116 |
-
type: "Convolution"
|
| 1117 |
-
bottom: "conv17_1"
|
| 1118 |
-
top: "conv17_2"
|
| 1119 |
-
param {
|
| 1120 |
-
lr_mult: 1.0
|
| 1121 |
-
decay_mult: 1.0
|
| 1122 |
-
}
|
| 1123 |
-
param {
|
| 1124 |
-
lr_mult: 2.0
|
| 1125 |
-
decay_mult: 0.0
|
| 1126 |
-
}
|
| 1127 |
-
convolution_param {
|
| 1128 |
-
num_output: 128
|
| 1129 |
-
pad: 1
|
| 1130 |
-
kernel_size: 3
|
| 1131 |
-
stride: 2
|
| 1132 |
-
weight_filler {
|
| 1133 |
-
type: "msra"
|
| 1134 |
-
}
|
| 1135 |
-
bias_filler {
|
| 1136 |
-
type: "constant"
|
| 1137 |
-
value: 0.0
|
| 1138 |
-
}
|
| 1139 |
-
}
|
| 1140 |
-
}
|
| 1141 |
-
layer {
|
| 1142 |
-
name: "conv17_2/relu"
|
| 1143 |
-
type: "ReLU"
|
| 1144 |
-
bottom: "conv17_2"
|
| 1145 |
-
top: "conv17_2"
|
| 1146 |
-
}
|
| 1147 |
-
layer {
|
| 1148 |
-
name: "conv11_mbox_loc"
|
| 1149 |
-
type: "Convolution"
|
| 1150 |
-
bottom: "conv11"
|
| 1151 |
-
top: "conv11_mbox_loc"
|
| 1152 |
-
param {
|
| 1153 |
-
lr_mult: 1.0
|
| 1154 |
-
decay_mult: 1.0
|
| 1155 |
-
}
|
| 1156 |
-
param {
|
| 1157 |
-
lr_mult: 2.0
|
| 1158 |
-
decay_mult: 0.0
|
| 1159 |
-
}
|
| 1160 |
-
convolution_param {
|
| 1161 |
-
num_output: 12
|
| 1162 |
-
kernel_size: 1
|
| 1163 |
-
weight_filler {
|
| 1164 |
-
type: "msra"
|
| 1165 |
-
}
|
| 1166 |
-
bias_filler {
|
| 1167 |
-
type: "constant"
|
| 1168 |
-
value: 0.0
|
| 1169 |
-
}
|
| 1170 |
-
}
|
| 1171 |
-
}
|
| 1172 |
-
layer {
|
| 1173 |
-
name: "conv11_mbox_loc_perm"
|
| 1174 |
-
type: "Permute"
|
| 1175 |
-
bottom: "conv11_mbox_loc"
|
| 1176 |
-
top: "conv11_mbox_loc_perm"
|
| 1177 |
-
permute_param {
|
| 1178 |
-
order: 0
|
| 1179 |
-
order: 2
|
| 1180 |
-
order: 3
|
| 1181 |
-
order: 1
|
| 1182 |
-
}
|
| 1183 |
-
}
|
| 1184 |
-
layer {
|
| 1185 |
-
name: "conv11_mbox_loc_flat"
|
| 1186 |
-
type: "Flatten"
|
| 1187 |
-
bottom: "conv11_mbox_loc_perm"
|
| 1188 |
-
top: "conv11_mbox_loc_flat"
|
| 1189 |
-
flatten_param {
|
| 1190 |
-
axis: 1
|
| 1191 |
-
}
|
| 1192 |
-
}
|
| 1193 |
-
layer {
|
| 1194 |
-
name: "conv11_mbox_conf"
|
| 1195 |
-
type: "Convolution"
|
| 1196 |
-
bottom: "conv11"
|
| 1197 |
-
top: "conv11_mbox_conf"
|
| 1198 |
-
param {
|
| 1199 |
-
lr_mult: 1.0
|
| 1200 |
-
decay_mult: 1.0
|
| 1201 |
-
}
|
| 1202 |
-
param {
|
| 1203 |
-
lr_mult: 2.0
|
| 1204 |
-
decay_mult: 0.0
|
| 1205 |
-
}
|
| 1206 |
-
convolution_param {
|
| 1207 |
-
num_output: 63
|
| 1208 |
-
kernel_size: 1
|
| 1209 |
-
weight_filler {
|
| 1210 |
-
type: "msra"
|
| 1211 |
-
}
|
| 1212 |
-
bias_filler {
|
| 1213 |
-
type: "constant"
|
| 1214 |
-
value: 0.0
|
| 1215 |
-
}
|
| 1216 |
-
}
|
| 1217 |
-
}
|
| 1218 |
-
layer {
|
| 1219 |
-
name: "conv11_mbox_conf_perm"
|
| 1220 |
-
type: "Permute"
|
| 1221 |
-
bottom: "conv11_mbox_conf"
|
| 1222 |
-
top: "conv11_mbox_conf_perm"
|
| 1223 |
-
permute_param {
|
| 1224 |
-
order: 0
|
| 1225 |
-
order: 2
|
| 1226 |
-
order: 3
|
| 1227 |
-
order: 1
|
| 1228 |
-
}
|
| 1229 |
-
}
|
| 1230 |
-
layer {
|
| 1231 |
-
name: "conv11_mbox_conf_flat"
|
| 1232 |
-
type: "Flatten"
|
| 1233 |
-
bottom: "conv11_mbox_conf_perm"
|
| 1234 |
-
top: "conv11_mbox_conf_flat"
|
| 1235 |
-
flatten_param {
|
| 1236 |
-
axis: 1
|
| 1237 |
-
}
|
| 1238 |
-
}
|
| 1239 |
-
layer {
|
| 1240 |
-
name: "conv11_mbox_priorbox"
|
| 1241 |
-
type: "PriorBox"
|
| 1242 |
-
bottom: "conv11"
|
| 1243 |
-
bottom: "data"
|
| 1244 |
-
top: "conv11_mbox_priorbox"
|
| 1245 |
-
prior_box_param {
|
| 1246 |
-
min_size: 60.0
|
| 1247 |
-
aspect_ratio: 2.0
|
| 1248 |
-
flip: true
|
| 1249 |
-
clip: false
|
| 1250 |
-
variance: 0.1
|
| 1251 |
-
variance: 0.1
|
| 1252 |
-
variance: 0.2
|
| 1253 |
-
variance: 0.2
|
| 1254 |
-
offset: 0.5
|
| 1255 |
-
}
|
| 1256 |
-
}
|
| 1257 |
-
layer {
|
| 1258 |
-
name: "conv13_mbox_loc"
|
| 1259 |
-
type: "Convolution"
|
| 1260 |
-
bottom: "conv13"
|
| 1261 |
-
top: "conv13_mbox_loc"
|
| 1262 |
-
param {
|
| 1263 |
-
lr_mult: 1.0
|
| 1264 |
-
decay_mult: 1.0
|
| 1265 |
-
}
|
| 1266 |
-
param {
|
| 1267 |
-
lr_mult: 2.0
|
| 1268 |
-
decay_mult: 0.0
|
| 1269 |
-
}
|
| 1270 |
-
convolution_param {
|
| 1271 |
-
num_output: 24
|
| 1272 |
-
kernel_size: 1
|
| 1273 |
-
weight_filler {
|
| 1274 |
-
type: "msra"
|
| 1275 |
-
}
|
| 1276 |
-
bias_filler {
|
| 1277 |
-
type: "constant"
|
| 1278 |
-
value: 0.0
|
| 1279 |
-
}
|
| 1280 |
-
}
|
| 1281 |
-
}
|
| 1282 |
-
layer {
|
| 1283 |
-
name: "conv13_mbox_loc_perm"
|
| 1284 |
-
type: "Permute"
|
| 1285 |
-
bottom: "conv13_mbox_loc"
|
| 1286 |
-
top: "conv13_mbox_loc_perm"
|
| 1287 |
-
permute_param {
|
| 1288 |
-
order: 0
|
| 1289 |
-
order: 2
|
| 1290 |
-
order: 3
|
| 1291 |
-
order: 1
|
| 1292 |
-
}
|
| 1293 |
-
}
|
| 1294 |
-
layer {
|
| 1295 |
-
name: "conv13_mbox_loc_flat"
|
| 1296 |
-
type: "Flatten"
|
| 1297 |
-
bottom: "conv13_mbox_loc_perm"
|
| 1298 |
-
top: "conv13_mbox_loc_flat"
|
| 1299 |
-
flatten_param {
|
| 1300 |
-
axis: 1
|
| 1301 |
-
}
|
| 1302 |
-
}
|
| 1303 |
-
layer {
|
| 1304 |
-
name: "conv13_mbox_conf"
|
| 1305 |
-
type: "Convolution"
|
| 1306 |
-
bottom: "conv13"
|
| 1307 |
-
top: "conv13_mbox_conf"
|
| 1308 |
-
param {
|
| 1309 |
-
lr_mult: 1.0
|
| 1310 |
-
decay_mult: 1.0
|
| 1311 |
-
}
|
| 1312 |
-
param {
|
| 1313 |
-
lr_mult: 2.0
|
| 1314 |
-
decay_mult: 0.0
|
| 1315 |
-
}
|
| 1316 |
-
convolution_param {
|
| 1317 |
-
num_output: 126
|
| 1318 |
-
kernel_size: 1
|
| 1319 |
-
weight_filler {
|
| 1320 |
-
type: "msra"
|
| 1321 |
-
}
|
| 1322 |
-
bias_filler {
|
| 1323 |
-
type: "constant"
|
| 1324 |
-
value: 0.0
|
| 1325 |
-
}
|
| 1326 |
-
}
|
| 1327 |
-
}
|
| 1328 |
-
layer {
|
| 1329 |
-
name: "conv13_mbox_conf_perm"
|
| 1330 |
-
type: "Permute"
|
| 1331 |
-
bottom: "conv13_mbox_conf"
|
| 1332 |
-
top: "conv13_mbox_conf_perm"
|
| 1333 |
-
permute_param {
|
| 1334 |
-
order: 0
|
| 1335 |
-
order: 2
|
| 1336 |
-
order: 3
|
| 1337 |
-
order: 1
|
| 1338 |
-
}
|
| 1339 |
-
}
|
| 1340 |
-
layer {
|
| 1341 |
-
name: "conv13_mbox_conf_flat"
|
| 1342 |
-
type: "Flatten"
|
| 1343 |
-
bottom: "conv13_mbox_conf_perm"
|
| 1344 |
-
top: "conv13_mbox_conf_flat"
|
| 1345 |
-
flatten_param {
|
| 1346 |
-
axis: 1
|
| 1347 |
-
}
|
| 1348 |
-
}
|
| 1349 |
-
layer {
|
| 1350 |
-
name: "conv13_mbox_priorbox"
|
| 1351 |
-
type: "PriorBox"
|
| 1352 |
-
bottom: "conv13"
|
| 1353 |
-
bottom: "data"
|
| 1354 |
-
top: "conv13_mbox_priorbox"
|
| 1355 |
-
prior_box_param {
|
| 1356 |
-
min_size: 105.0
|
| 1357 |
-
max_size: 150.0
|
| 1358 |
-
aspect_ratio: 2.0
|
| 1359 |
-
aspect_ratio: 3.0
|
| 1360 |
-
flip: true
|
| 1361 |
-
clip: false
|
| 1362 |
-
variance: 0.1
|
| 1363 |
-
variance: 0.1
|
| 1364 |
-
variance: 0.2
|
| 1365 |
-
variance: 0.2
|
| 1366 |
-
offset: 0.5
|
| 1367 |
-
}
|
| 1368 |
-
}
|
| 1369 |
-
layer {
|
| 1370 |
-
name: "conv14_2_mbox_loc"
|
| 1371 |
-
type: "Convolution"
|
| 1372 |
-
bottom: "conv14_2"
|
| 1373 |
-
top: "conv14_2_mbox_loc"
|
| 1374 |
-
param {
|
| 1375 |
-
lr_mult: 1.0
|
| 1376 |
-
decay_mult: 1.0
|
| 1377 |
-
}
|
| 1378 |
-
param {
|
| 1379 |
-
lr_mult: 2.0
|
| 1380 |
-
decay_mult: 0.0
|
| 1381 |
-
}
|
| 1382 |
-
convolution_param {
|
| 1383 |
-
num_output: 24
|
| 1384 |
-
kernel_size: 1
|
| 1385 |
-
weight_filler {
|
| 1386 |
-
type: "msra"
|
| 1387 |
-
}
|
| 1388 |
-
bias_filler {
|
| 1389 |
-
type: "constant"
|
| 1390 |
-
value: 0.0
|
| 1391 |
-
}
|
| 1392 |
-
}
|
| 1393 |
-
}
|
| 1394 |
-
layer {
|
| 1395 |
-
name: "conv14_2_mbox_loc_perm"
|
| 1396 |
-
type: "Permute"
|
| 1397 |
-
bottom: "conv14_2_mbox_loc"
|
| 1398 |
-
top: "conv14_2_mbox_loc_perm"
|
| 1399 |
-
permute_param {
|
| 1400 |
-
order: 0
|
| 1401 |
-
order: 2
|
| 1402 |
-
order: 3
|
| 1403 |
-
order: 1
|
| 1404 |
-
}
|
| 1405 |
-
}
|
| 1406 |
-
layer {
|
| 1407 |
-
name: "conv14_2_mbox_loc_flat"
|
| 1408 |
-
type: "Flatten"
|
| 1409 |
-
bottom: "conv14_2_mbox_loc_perm"
|
| 1410 |
-
top: "conv14_2_mbox_loc_flat"
|
| 1411 |
-
flatten_param {
|
| 1412 |
-
axis: 1
|
| 1413 |
-
}
|
| 1414 |
-
}
|
| 1415 |
-
layer {
|
| 1416 |
-
name: "conv14_2_mbox_conf"
|
| 1417 |
-
type: "Convolution"
|
| 1418 |
-
bottom: "conv14_2"
|
| 1419 |
-
top: "conv14_2_mbox_conf"
|
| 1420 |
-
param {
|
| 1421 |
-
lr_mult: 1.0
|
| 1422 |
-
decay_mult: 1.0
|
| 1423 |
-
}
|
| 1424 |
-
param {
|
| 1425 |
-
lr_mult: 2.0
|
| 1426 |
-
decay_mult: 0.0
|
| 1427 |
-
}
|
| 1428 |
-
convolution_param {
|
| 1429 |
-
num_output: 126
|
| 1430 |
-
kernel_size: 1
|
| 1431 |
-
weight_filler {
|
| 1432 |
-
type: "msra"
|
| 1433 |
-
}
|
| 1434 |
-
bias_filler {
|
| 1435 |
-
type: "constant"
|
| 1436 |
-
value: 0.0
|
| 1437 |
-
}
|
| 1438 |
-
}
|
| 1439 |
-
}
|
| 1440 |
-
layer {
|
| 1441 |
-
name: "conv14_2_mbox_conf_perm"
|
| 1442 |
-
type: "Permute"
|
| 1443 |
-
bottom: "conv14_2_mbox_conf"
|
| 1444 |
-
top: "conv14_2_mbox_conf_perm"
|
| 1445 |
-
permute_param {
|
| 1446 |
-
order: 0
|
| 1447 |
-
order: 2
|
| 1448 |
-
order: 3
|
| 1449 |
-
order: 1
|
| 1450 |
-
}
|
| 1451 |
-
}
|
| 1452 |
-
layer {
|
| 1453 |
-
name: "conv14_2_mbox_conf_flat"
|
| 1454 |
-
type: "Flatten"
|
| 1455 |
-
bottom: "conv14_2_mbox_conf_perm"
|
| 1456 |
-
top: "conv14_2_mbox_conf_flat"
|
| 1457 |
-
flatten_param {
|
| 1458 |
-
axis: 1
|
| 1459 |
-
}
|
| 1460 |
-
}
|
| 1461 |
-
layer {
|
| 1462 |
-
name: "conv14_2_mbox_priorbox"
|
| 1463 |
-
type: "PriorBox"
|
| 1464 |
-
bottom: "conv14_2"
|
| 1465 |
-
bottom: "data"
|
| 1466 |
-
top: "conv14_2_mbox_priorbox"
|
| 1467 |
-
prior_box_param {
|
| 1468 |
-
min_size: 150.0
|
| 1469 |
-
max_size: 195.0
|
| 1470 |
-
aspect_ratio: 2.0
|
| 1471 |
-
aspect_ratio: 3.0
|
| 1472 |
-
flip: true
|
| 1473 |
-
clip: false
|
| 1474 |
-
variance: 0.1
|
| 1475 |
-
variance: 0.1
|
| 1476 |
-
variance: 0.2
|
| 1477 |
-
variance: 0.2
|
| 1478 |
-
offset: 0.5
|
| 1479 |
-
}
|
| 1480 |
-
}
|
| 1481 |
-
layer {
|
| 1482 |
-
name: "conv15_2_mbox_loc"
|
| 1483 |
-
type: "Convolution"
|
| 1484 |
-
bottom: "conv15_2"
|
| 1485 |
-
top: "conv15_2_mbox_loc"
|
| 1486 |
-
param {
|
| 1487 |
-
lr_mult: 1.0
|
| 1488 |
-
decay_mult: 1.0
|
| 1489 |
-
}
|
| 1490 |
-
param {
|
| 1491 |
-
lr_mult: 2.0
|
| 1492 |
-
decay_mult: 0.0
|
| 1493 |
-
}
|
| 1494 |
-
convolution_param {
|
| 1495 |
-
num_output: 24
|
| 1496 |
-
kernel_size: 1
|
| 1497 |
-
weight_filler {
|
| 1498 |
-
type: "msra"
|
| 1499 |
-
}
|
| 1500 |
-
bias_filler {
|
| 1501 |
-
type: "constant"
|
| 1502 |
-
value: 0.0
|
| 1503 |
-
}
|
| 1504 |
-
}
|
| 1505 |
-
}
|
| 1506 |
-
layer {
|
| 1507 |
-
name: "conv15_2_mbox_loc_perm"
|
| 1508 |
-
type: "Permute"
|
| 1509 |
-
bottom: "conv15_2_mbox_loc"
|
| 1510 |
-
top: "conv15_2_mbox_loc_perm"
|
| 1511 |
-
permute_param {
|
| 1512 |
-
order: 0
|
| 1513 |
-
order: 2
|
| 1514 |
-
order: 3
|
| 1515 |
-
order: 1
|
| 1516 |
-
}
|
| 1517 |
-
}
|
| 1518 |
-
layer {
|
| 1519 |
-
name: "conv15_2_mbox_loc_flat"
|
| 1520 |
-
type: "Flatten"
|
| 1521 |
-
bottom: "conv15_2_mbox_loc_perm"
|
| 1522 |
-
top: "conv15_2_mbox_loc_flat"
|
| 1523 |
-
flatten_param {
|
| 1524 |
-
axis: 1
|
| 1525 |
-
}
|
| 1526 |
-
}
|
| 1527 |
-
layer {
|
| 1528 |
-
name: "conv15_2_mbox_conf"
|
| 1529 |
-
type: "Convolution"
|
| 1530 |
-
bottom: "conv15_2"
|
| 1531 |
-
top: "conv15_2_mbox_conf"
|
| 1532 |
-
param {
|
| 1533 |
-
lr_mult: 1.0
|
| 1534 |
-
decay_mult: 1.0
|
| 1535 |
-
}
|
| 1536 |
-
param {
|
| 1537 |
-
lr_mult: 2.0
|
| 1538 |
-
decay_mult: 0.0
|
| 1539 |
-
}
|
| 1540 |
-
convolution_param {
|
| 1541 |
-
num_output: 126
|
| 1542 |
-
kernel_size: 1
|
| 1543 |
-
weight_filler {
|
| 1544 |
-
type: "msra"
|
| 1545 |
-
}
|
| 1546 |
-
bias_filler {
|
| 1547 |
-
type: "constant"
|
| 1548 |
-
value: 0.0
|
| 1549 |
-
}
|
| 1550 |
-
}
|
| 1551 |
-
}
|
| 1552 |
-
layer {
|
| 1553 |
-
name: "conv15_2_mbox_conf_perm"
|
| 1554 |
-
type: "Permute"
|
| 1555 |
-
bottom: "conv15_2_mbox_conf"
|
| 1556 |
-
top: "conv15_2_mbox_conf_perm"
|
| 1557 |
-
permute_param {
|
| 1558 |
-
order: 0
|
| 1559 |
-
order: 2
|
| 1560 |
-
order: 3
|
| 1561 |
-
order: 1
|
| 1562 |
-
}
|
| 1563 |
-
}
|
| 1564 |
-
layer {
|
| 1565 |
-
name: "conv15_2_mbox_conf_flat"
|
| 1566 |
-
type: "Flatten"
|
| 1567 |
-
bottom: "conv15_2_mbox_conf_perm"
|
| 1568 |
-
top: "conv15_2_mbox_conf_flat"
|
| 1569 |
-
flatten_param {
|
| 1570 |
-
axis: 1
|
| 1571 |
-
}
|
| 1572 |
-
}
|
| 1573 |
-
layer {
|
| 1574 |
-
name: "conv15_2_mbox_priorbox"
|
| 1575 |
-
type: "PriorBox"
|
| 1576 |
-
bottom: "conv15_2"
|
| 1577 |
-
bottom: "data"
|
| 1578 |
-
top: "conv15_2_mbox_priorbox"
|
| 1579 |
-
prior_box_param {
|
| 1580 |
-
min_size: 195.0
|
| 1581 |
-
max_size: 240.0
|
| 1582 |
-
aspect_ratio: 2.0
|
| 1583 |
-
aspect_ratio: 3.0
|
| 1584 |
-
flip: true
|
| 1585 |
-
clip: false
|
| 1586 |
-
variance: 0.1
|
| 1587 |
-
variance: 0.1
|
| 1588 |
-
variance: 0.2
|
| 1589 |
-
variance: 0.2
|
| 1590 |
-
offset: 0.5
|
| 1591 |
-
}
|
| 1592 |
-
}
|
| 1593 |
-
layer {
|
| 1594 |
-
name: "conv16_2_mbox_loc"
|
| 1595 |
-
type: "Convolution"
|
| 1596 |
-
bottom: "conv16_2"
|
| 1597 |
-
top: "conv16_2_mbox_loc"
|
| 1598 |
-
param {
|
| 1599 |
-
lr_mult: 1.0
|
| 1600 |
-
decay_mult: 1.0
|
| 1601 |
-
}
|
| 1602 |
-
param {
|
| 1603 |
-
lr_mult: 2.0
|
| 1604 |
-
decay_mult: 0.0
|
| 1605 |
-
}
|
| 1606 |
-
convolution_param {
|
| 1607 |
-
num_output: 24
|
| 1608 |
-
kernel_size: 1
|
| 1609 |
-
weight_filler {
|
| 1610 |
-
type: "msra"
|
| 1611 |
-
}
|
| 1612 |
-
bias_filler {
|
| 1613 |
-
type: "constant"
|
| 1614 |
-
value: 0.0
|
| 1615 |
-
}
|
| 1616 |
-
}
|
| 1617 |
-
}
|
| 1618 |
-
layer {
|
| 1619 |
-
name: "conv16_2_mbox_loc_perm"
|
| 1620 |
-
type: "Permute"
|
| 1621 |
-
bottom: "conv16_2_mbox_loc"
|
| 1622 |
-
top: "conv16_2_mbox_loc_perm"
|
| 1623 |
-
permute_param {
|
| 1624 |
-
order: 0
|
| 1625 |
-
order: 2
|
| 1626 |
-
order: 3
|
| 1627 |
-
order: 1
|
| 1628 |
-
}
|
| 1629 |
-
}
|
| 1630 |
-
layer {
|
| 1631 |
-
name: "conv16_2_mbox_loc_flat"
|
| 1632 |
-
type: "Flatten"
|
| 1633 |
-
bottom: "conv16_2_mbox_loc_perm"
|
| 1634 |
-
top: "conv16_2_mbox_loc_flat"
|
| 1635 |
-
flatten_param {
|
| 1636 |
-
axis: 1
|
| 1637 |
-
}
|
| 1638 |
-
}
|
| 1639 |
-
layer {
|
| 1640 |
-
name: "conv16_2_mbox_conf"
|
| 1641 |
-
type: "Convolution"
|
| 1642 |
-
bottom: "conv16_2"
|
| 1643 |
-
top: "conv16_2_mbox_conf"
|
| 1644 |
-
param {
|
| 1645 |
-
lr_mult: 1.0
|
| 1646 |
-
decay_mult: 1.0
|
| 1647 |
-
}
|
| 1648 |
-
param {
|
| 1649 |
-
lr_mult: 2.0
|
| 1650 |
-
decay_mult: 0.0
|
| 1651 |
-
}
|
| 1652 |
-
convolution_param {
|
| 1653 |
-
num_output: 126
|
| 1654 |
-
kernel_size: 1
|
| 1655 |
-
weight_filler {
|
| 1656 |
-
type: "msra"
|
| 1657 |
-
}
|
| 1658 |
-
bias_filler {
|
| 1659 |
-
type: "constant"
|
| 1660 |
-
value: 0.0
|
| 1661 |
-
}
|
| 1662 |
-
}
|
| 1663 |
-
}
|
| 1664 |
-
layer {
|
| 1665 |
-
name: "conv16_2_mbox_conf_perm"
|
| 1666 |
-
type: "Permute"
|
| 1667 |
-
bottom: "conv16_2_mbox_conf"
|
| 1668 |
-
top: "conv16_2_mbox_conf_perm"
|
| 1669 |
-
permute_param {
|
| 1670 |
-
order: 0
|
| 1671 |
-
order: 2
|
| 1672 |
-
order: 3
|
| 1673 |
-
order: 1
|
| 1674 |
-
}
|
| 1675 |
-
}
|
| 1676 |
-
layer {
|
| 1677 |
-
name: "conv16_2_mbox_conf_flat"
|
| 1678 |
-
type: "Flatten"
|
| 1679 |
-
bottom: "conv16_2_mbox_conf_perm"
|
| 1680 |
-
top: "conv16_2_mbox_conf_flat"
|
| 1681 |
-
flatten_param {
|
| 1682 |
-
axis: 1
|
| 1683 |
-
}
|
| 1684 |
-
}
|
| 1685 |
-
layer {
|
| 1686 |
-
name: "conv16_2_mbox_priorbox"
|
| 1687 |
-
type: "PriorBox"
|
| 1688 |
-
bottom: "conv16_2"
|
| 1689 |
-
bottom: "data"
|
| 1690 |
-
top: "conv16_2_mbox_priorbox"
|
| 1691 |
-
prior_box_param {
|
| 1692 |
-
min_size: 240.0
|
| 1693 |
-
max_size: 285.0
|
| 1694 |
-
aspect_ratio: 2.0
|
| 1695 |
-
aspect_ratio: 3.0
|
| 1696 |
-
flip: true
|
| 1697 |
-
clip: false
|
| 1698 |
-
variance: 0.1
|
| 1699 |
-
variance: 0.1
|
| 1700 |
-
variance: 0.2
|
| 1701 |
-
variance: 0.2
|
| 1702 |
-
offset: 0.5
|
| 1703 |
-
}
|
| 1704 |
-
}
|
| 1705 |
-
layer {
|
| 1706 |
-
name: "conv17_2_mbox_loc"
|
| 1707 |
-
type: "Convolution"
|
| 1708 |
-
bottom: "conv17_2"
|
| 1709 |
-
top: "conv17_2_mbox_loc"
|
| 1710 |
-
param {
|
| 1711 |
-
lr_mult: 1.0
|
| 1712 |
-
decay_mult: 1.0
|
| 1713 |
-
}
|
| 1714 |
-
param {
|
| 1715 |
-
lr_mult: 2.0
|
| 1716 |
-
decay_mult: 0.0
|
| 1717 |
-
}
|
| 1718 |
-
convolution_param {
|
| 1719 |
-
num_output: 24
|
| 1720 |
-
kernel_size: 1
|
| 1721 |
-
weight_filler {
|
| 1722 |
-
type: "msra"
|
| 1723 |
-
}
|
| 1724 |
-
bias_filler {
|
| 1725 |
-
type: "constant"
|
| 1726 |
-
value: 0.0
|
| 1727 |
-
}
|
| 1728 |
-
}
|
| 1729 |
-
}
|
| 1730 |
-
layer {
|
| 1731 |
-
name: "conv17_2_mbox_loc_perm"
|
| 1732 |
-
type: "Permute"
|
| 1733 |
-
bottom: "conv17_2_mbox_loc"
|
| 1734 |
-
top: "conv17_2_mbox_loc_perm"
|
| 1735 |
-
permute_param {
|
| 1736 |
-
order: 0
|
| 1737 |
-
order: 2
|
| 1738 |
-
order: 3
|
| 1739 |
-
order: 1
|
| 1740 |
-
}
|
| 1741 |
-
}
|
| 1742 |
-
layer {
|
| 1743 |
-
name: "conv17_2_mbox_loc_flat"
|
| 1744 |
-
type: "Flatten"
|
| 1745 |
-
bottom: "conv17_2_mbox_loc_perm"
|
| 1746 |
-
top: "conv17_2_mbox_loc_flat"
|
| 1747 |
-
flatten_param {
|
| 1748 |
-
axis: 1
|
| 1749 |
-
}
|
| 1750 |
-
}
|
| 1751 |
-
layer {
|
| 1752 |
-
name: "conv17_2_mbox_conf"
|
| 1753 |
-
type: "Convolution"
|
| 1754 |
-
bottom: "conv17_2"
|
| 1755 |
-
top: "conv17_2_mbox_conf"
|
| 1756 |
-
param {
|
| 1757 |
-
lr_mult: 1.0
|
| 1758 |
-
decay_mult: 1.0
|
| 1759 |
-
}
|
| 1760 |
-
param {
|
| 1761 |
-
lr_mult: 2.0
|
| 1762 |
-
decay_mult: 0.0
|
| 1763 |
-
}
|
| 1764 |
-
convolution_param {
|
| 1765 |
-
num_output: 126
|
| 1766 |
-
kernel_size: 1
|
| 1767 |
-
weight_filler {
|
| 1768 |
-
type: "msra"
|
| 1769 |
-
}
|
| 1770 |
-
bias_filler {
|
| 1771 |
-
type: "constant"
|
| 1772 |
-
value: 0.0
|
| 1773 |
-
}
|
| 1774 |
-
}
|
| 1775 |
-
}
|
| 1776 |
-
layer {
|
| 1777 |
-
name: "conv17_2_mbox_conf_perm"
|
| 1778 |
-
type: "Permute"
|
| 1779 |
-
bottom: "conv17_2_mbox_conf"
|
| 1780 |
-
top: "conv17_2_mbox_conf_perm"
|
| 1781 |
-
permute_param {
|
| 1782 |
-
order: 0
|
| 1783 |
-
order: 2
|
| 1784 |
-
order: 3
|
| 1785 |
-
order: 1
|
| 1786 |
-
}
|
| 1787 |
-
}
|
| 1788 |
-
layer {
|
| 1789 |
-
name: "conv17_2_mbox_conf_flat"
|
| 1790 |
-
type: "Flatten"
|
| 1791 |
-
bottom: "conv17_2_mbox_conf_perm"
|
| 1792 |
-
top: "conv17_2_mbox_conf_flat"
|
| 1793 |
-
flatten_param {
|
| 1794 |
-
axis: 1
|
| 1795 |
-
}
|
| 1796 |
-
}
|
| 1797 |
-
layer {
|
| 1798 |
-
name: "conv17_2_mbox_priorbox"
|
| 1799 |
-
type: "PriorBox"
|
| 1800 |
-
bottom: "conv17_2"
|
| 1801 |
-
bottom: "data"
|
| 1802 |
-
top: "conv17_2_mbox_priorbox"
|
| 1803 |
-
prior_box_param {
|
| 1804 |
-
min_size: 285.0
|
| 1805 |
-
max_size: 300.0
|
| 1806 |
-
aspect_ratio: 2.0
|
| 1807 |
-
aspect_ratio: 3.0
|
| 1808 |
-
flip: true
|
| 1809 |
-
clip: false
|
| 1810 |
-
variance: 0.1
|
| 1811 |
-
variance: 0.1
|
| 1812 |
-
variance: 0.2
|
| 1813 |
-
variance: 0.2
|
| 1814 |
-
offset: 0.5
|
| 1815 |
-
}
|
| 1816 |
-
}
|
| 1817 |
-
layer {
|
| 1818 |
-
name: "mbox_loc"
|
| 1819 |
-
type: "Concat"
|
| 1820 |
-
bottom: "conv11_mbox_loc_flat"
|
| 1821 |
-
bottom: "conv13_mbox_loc_flat"
|
| 1822 |
-
bottom: "conv14_2_mbox_loc_flat"
|
| 1823 |
-
bottom: "conv15_2_mbox_loc_flat"
|
| 1824 |
-
bottom: "conv16_2_mbox_loc_flat"
|
| 1825 |
-
bottom: "conv17_2_mbox_loc_flat"
|
| 1826 |
-
top: "mbox_loc"
|
| 1827 |
-
concat_param {
|
| 1828 |
-
axis: 1
|
| 1829 |
-
}
|
| 1830 |
-
}
|
| 1831 |
-
layer {
|
| 1832 |
-
name: "mbox_conf"
|
| 1833 |
-
type: "Concat"
|
| 1834 |
-
bottom: "conv11_mbox_conf_flat"
|
| 1835 |
-
bottom: "conv13_mbox_conf_flat"
|
| 1836 |
-
bottom: "conv14_2_mbox_conf_flat"
|
| 1837 |
-
bottom: "conv15_2_mbox_conf_flat"
|
| 1838 |
-
bottom: "conv16_2_mbox_conf_flat"
|
| 1839 |
-
bottom: "conv17_2_mbox_conf_flat"
|
| 1840 |
-
top: "mbox_conf"
|
| 1841 |
-
concat_param {
|
| 1842 |
-
axis: 1
|
| 1843 |
-
}
|
| 1844 |
-
}
|
| 1845 |
-
layer {
|
| 1846 |
-
name: "mbox_priorbox"
|
| 1847 |
-
type: "Concat"
|
| 1848 |
-
bottom: "conv11_mbox_priorbox"
|
| 1849 |
-
bottom: "conv13_mbox_priorbox"
|
| 1850 |
-
bottom: "conv14_2_mbox_priorbox"
|
| 1851 |
-
bottom: "conv15_2_mbox_priorbox"
|
| 1852 |
-
bottom: "conv16_2_mbox_priorbox"
|
| 1853 |
-
bottom: "conv17_2_mbox_priorbox"
|
| 1854 |
-
top: "mbox_priorbox"
|
| 1855 |
-
concat_param {
|
| 1856 |
-
axis: 2
|
| 1857 |
-
}
|
| 1858 |
-
}
|
| 1859 |
-
layer {
|
| 1860 |
-
name: "mbox_conf_reshape"
|
| 1861 |
-
type: "Reshape"
|
| 1862 |
-
bottom: "mbox_conf"
|
| 1863 |
-
top: "mbox_conf_reshape"
|
| 1864 |
-
reshape_param {
|
| 1865 |
-
shape {
|
| 1866 |
-
dim: 0
|
| 1867 |
-
dim: -1
|
| 1868 |
-
dim: 21
|
| 1869 |
-
}
|
| 1870 |
-
}
|
| 1871 |
-
}
|
| 1872 |
-
layer {
|
| 1873 |
-
name: "mbox_conf_softmax"
|
| 1874 |
-
type: "Softmax"
|
| 1875 |
-
bottom: "mbox_conf_reshape"
|
| 1876 |
-
top: "mbox_conf_softmax"
|
| 1877 |
-
softmax_param {
|
| 1878 |
-
axis: 2
|
| 1879 |
-
}
|
| 1880 |
-
}
|
| 1881 |
-
layer {
|
| 1882 |
-
name: "mbox_conf_flatten"
|
| 1883 |
-
type: "Flatten"
|
| 1884 |
-
bottom: "mbox_conf_softmax"
|
| 1885 |
-
top: "mbox_conf_flatten"
|
| 1886 |
-
flatten_param {
|
| 1887 |
-
axis: 1
|
| 1888 |
-
}
|
| 1889 |
-
}
|
| 1890 |
-
layer {
|
| 1891 |
-
name: "detection_out"
|
| 1892 |
-
type: "DetectionOutput"
|
| 1893 |
-
bottom: "mbox_loc"
|
| 1894 |
-
bottom: "mbox_conf_flatten"
|
| 1895 |
-
bottom: "mbox_priorbox"
|
| 1896 |
-
top: "detection_out"
|
| 1897 |
-
include {
|
| 1898 |
-
phase: TEST
|
| 1899 |
-
}
|
| 1900 |
-
detection_output_param {
|
| 1901 |
-
num_classes: 21
|
| 1902 |
-
share_location: true
|
| 1903 |
-
background_label_id: 0
|
| 1904 |
-
nms_param {
|
| 1905 |
-
nms_threshold: 0.45
|
| 1906 |
-
top_k: 100
|
| 1907 |
-
}
|
| 1908 |
-
code_type: CENTER_SIZE
|
| 1909 |
-
keep_top_k: 100
|
| 1910 |
-
confidence_threshold: 0.25
|
| 1911 |
-
}
|
| 1912 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,13 +1,44 @@
|
|
| 1 |
---
|
| 2 |
-
title: Webrtc
|
| 3 |
-
emoji: 📈
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: gray
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.0.0b3
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- object-detection
|
| 5 |
+
- computer-vision
|
| 6 |
+
- yolov10
|
| 7 |
+
datasets:
|
| 8 |
+
- detection-datasets/coco
|
| 9 |
+
sdk: gradio
|
| 10 |
+
sdk_version: 5.0.0b1
|
| 11 |
---
|
| 12 |
|
| 13 |
+
### Model Description
|
| 14 |
+
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1)
|
| 15 |
+
|
| 16 |
+
- arXiv: https://arxiv.org/abs/2405.14458v1
|
| 17 |
+
- github: https://github.com/THU-MIG/yolov10
|
| 18 |
+
|
| 19 |
+
### Installation
|
| 20 |
+
```
|
| 21 |
+
pip install supervision git+https://github.com/THU-MIG/yolov10.git
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
### Yolov10 Inference
|
| 25 |
+
```python
|
| 26 |
+
from ultralytics import YOLOv10
|
| 27 |
+
import supervision as sv
|
| 28 |
+
import cv2
|
| 29 |
+
|
| 30 |
+
IMAGE_PATH = 'dog.jpeg'
|
| 31 |
+
|
| 32 |
+
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
|
| 33 |
+
model.predict(IMAGE_PATH, show=True)
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
### BibTeX Entry and Citation Info
|
| 37 |
+
```
|
| 38 |
+
@article{wang2024yolov10,
|
| 39 |
+
title={YOLOv10: Real-Time End-to-End Object Detection},
|
| 40 |
+
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
|
| 41 |
+
journal={arXiv preprint arXiv:2405.14458},
|
| 42 |
+
year={2024}
|
| 43 |
+
}
|
| 44 |
+
```
|
app.py
CHANGED
|
@@ -1,10 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
-
|
| 4 |
from gradio_webrtc import WebRTC
|
| 5 |
-
from pathlib import Path
|
| 6 |
from twilio.rest import Client
|
| 7 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
| 10 |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
@@ -17,72 +23,16 @@ rtc_configuration = {
|
|
| 17 |
"iceTransportPolicy": "relay",
|
| 18 |
}
|
| 19 |
|
| 20 |
-
|
| 21 |
-
"background",
|
| 22 |
-
"aeroplane",
|
| 23 |
-
"bicycle",
|
| 24 |
-
"bird",
|
| 25 |
-
"boat",
|
| 26 |
-
"bottle",
|
| 27 |
-
"bus",
|
| 28 |
-
"car",
|
| 29 |
-
"cat",
|
| 30 |
-
"chair",
|
| 31 |
-
"cow",
|
| 32 |
-
"diningtable",
|
| 33 |
-
"dog",
|
| 34 |
-
"horse",
|
| 35 |
-
"motorbike",
|
| 36 |
-
"person",
|
| 37 |
-
"pottedplant",
|
| 38 |
-
"sheep",
|
| 39 |
-
"sofa",
|
| 40 |
-
"train",
|
| 41 |
-
"tvmonitor",
|
| 42 |
-
]
|
| 43 |
-
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
| 44 |
-
|
| 45 |
-
directory = Path(__file__).parent
|
| 46 |
-
|
| 47 |
-
MODEL = str((directory / "MobileNetSSD_deploy.caffemodel").resolve())
|
| 48 |
-
PROTOTXT = str((directory / "MobileNetSSD_deploy.prototxt.txt").resolve())
|
| 49 |
-
net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL)
|
| 50 |
|
| 51 |
|
| 52 |
def detection(image, conf_threshold=0.3):
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
)
|
| 57 |
-
net.setInput(blob)
|
| 58 |
-
|
| 59 |
-
detections = net.forward()
|
| 60 |
-
image = cv2.resize(image, (500, 500))
|
| 61 |
-
(h, w) = image.shape[:2]
|
| 62 |
-
labels = []
|
| 63 |
-
for i in np.arange(0, detections.shape[2]):
|
| 64 |
-
confidence = detections[0, 0, i, 2]
|
| 65 |
-
|
| 66 |
-
if confidence > conf_threshold:
|
| 67 |
-
# extract the index of the class label from the `detections`,
|
| 68 |
-
# then compute the (x, y)-coordinates of the bounding box for
|
| 69 |
-
# the object
|
| 70 |
-
idx = int(detections[0, 0, i, 1])
|
| 71 |
-
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
| 72 |
-
(startX, startY, endX, endY) = box.astype("int")
|
| 73 |
-
|
| 74 |
-
# display the prediction
|
| 75 |
-
label = f"{CLASSES[idx]}: {round(confidence * 100, 2)}%"
|
| 76 |
-
labels.append(label)
|
| 77 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
| 78 |
-
y = startY - 15 if startY - 15 > 15 else startY + 15
|
| 79 |
-
cv2.putText(
|
| 80 |
-
image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2
|
| 81 |
-
)
|
| 82 |
-
return image
|
| 83 |
|
| 84 |
|
| 85 |
-
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 86 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 87 |
|
| 88 |
|
|
@@ -90,12 +40,20 @@ with gr.Blocks(css=css) as demo:
|
|
| 90 |
gr.HTML(
|
| 91 |
"""
|
| 92 |
<h1 style='text-align: center'>
|
| 93 |
-
|
| 94 |
</h1>
|
| 95 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
with gr.Column(elem_classes=["my-column"]):
|
| 97 |
with gr.Group(elem_classes=["my-group"]):
|
| 98 |
-
image = WebRTC(label="
|
| 99 |
conf_threshold = gr.Slider(
|
| 100 |
label="Confidence Threshold",
|
| 101 |
minimum=0.0,
|
|
@@ -103,13 +61,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 103 |
step=0.05,
|
| 104 |
value=0.30,
|
| 105 |
)
|
| 106 |
-
|
| 107 |
image.webrtc_stream(
|
| 108 |
-
fn=detection,
|
| 109 |
-
inputs=[image],
|
| 110 |
-
stream_every=0.05,
|
| 111 |
-
time_limit=30
|
| 112 |
)
|
| 113 |
|
| 114 |
-
if __name__ ==
|
| 115 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
from gradio_webrtc import WebRTC
|
|
|
|
| 5 |
from twilio.rest import Client
|
| 6 |
import os
|
| 7 |
+
from inference import YOLOv10
|
| 8 |
+
|
| 9 |
+
model_file = hf_hub_download(
|
| 10 |
+
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
model = YOLOv10(model_file)
|
| 14 |
|
| 15 |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
| 16 |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
|
|
| 23 |
"iceTransportPolicy": "relay",
|
| 24 |
}
|
| 25 |
|
| 26 |
+
rtc_configuration = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
def detection(image, conf_threshold=0.3):
|
| 30 |
+
image = cv2.resize(image, (model.input_width, model.input_height))
|
| 31 |
+
new_image = model.detect_objects(image, conf_threshold)
|
| 32 |
+
return new_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
+
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 36 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 37 |
|
| 38 |
|
|
|
|
| 40 |
gr.HTML(
|
| 41 |
"""
|
| 42 |
<h1 style='text-align: center'>
|
| 43 |
+
YOLOv10 Webcam Stream
|
| 44 |
</h1>
|
| 45 |
+
"""
|
| 46 |
+
)
|
| 47 |
+
gr.HTML(
|
| 48 |
+
"""
|
| 49 |
+
<h3 style='text-align: center'>
|
| 50 |
+
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
| 51 |
+
</h3>
|
| 52 |
+
"""
|
| 53 |
+
)
|
| 54 |
with gr.Column(elem_classes=["my-column"]):
|
| 55 |
with gr.Group(elem_classes=["my-group"]):
|
| 56 |
+
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
|
| 57 |
conf_threshold = gr.Slider(
|
| 58 |
label="Confidence Threshold",
|
| 59 |
minimum=0.0,
|
|
|
|
| 61 |
step=0.05,
|
| 62 |
value=0.30,
|
| 63 |
)
|
| 64 |
+
|
| 65 |
image.webrtc_stream(
|
| 66 |
+
fn=detection, inputs=[image, conf_threshold], stream_every=0.05, time_limit=30
|
|
|
|
|
|
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
demo.launch()
|
inference.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime
|
| 5 |
+
|
| 6 |
+
from utils import draw_detections
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class YOLOv10:
|
| 10 |
+
def __init__(self, path):
|
| 11 |
+
|
| 12 |
+
# Initialize model
|
| 13 |
+
self.initialize_model(path)
|
| 14 |
+
|
| 15 |
+
def __call__(self, image):
|
| 16 |
+
return self.detect_objects(image)
|
| 17 |
+
|
| 18 |
+
def initialize_model(self, path):
|
| 19 |
+
self.session = onnxruntime.InferenceSession(
|
| 20 |
+
path, providers=onnxruntime.get_available_providers()
|
| 21 |
+
)
|
| 22 |
+
# Get model info
|
| 23 |
+
self.get_input_details()
|
| 24 |
+
self.get_output_details()
|
| 25 |
+
|
| 26 |
+
def detect_objects(self, image, conf_threshold=0.3):
|
| 27 |
+
input_tensor = self.prepare_input(image)
|
| 28 |
+
|
| 29 |
+
# Perform inference on the image
|
| 30 |
+
new_image = self.inference(image, input_tensor, conf_threshold)
|
| 31 |
+
|
| 32 |
+
return new_image
|
| 33 |
+
|
| 34 |
+
def prepare_input(self, image):
|
| 35 |
+
self.img_height, self.img_width = image.shape[:2]
|
| 36 |
+
|
| 37 |
+
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 38 |
+
|
| 39 |
+
# Resize input image
|
| 40 |
+
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
|
| 41 |
+
|
| 42 |
+
# Scale input pixel values to 0 to 1
|
| 43 |
+
input_img = input_img / 255.0
|
| 44 |
+
input_img = input_img.transpose(2, 0, 1)
|
| 45 |
+
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
| 46 |
+
|
| 47 |
+
return input_tensor
|
| 48 |
+
|
| 49 |
+
def inference(self, image, input_tensor, conf_threshold=0.3):
|
| 50 |
+
start = time.perf_counter()
|
| 51 |
+
outputs = self.session.run(
|
| 52 |
+
self.output_names, {self.input_names[0]: input_tensor}
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
|
| 56 |
+
boxes, scores, class_ids, = self.process_output(outputs, conf_threshold)
|
| 57 |
+
return self.draw_detections(image, boxes, scores, class_ids)
|
| 58 |
+
|
| 59 |
+
def process_output(self, output, conf_threshold=0.3):
|
| 60 |
+
predictions = np.squeeze(output[0])
|
| 61 |
+
|
| 62 |
+
# Filter out object confidence scores below threshold
|
| 63 |
+
scores = predictions[:, 4]
|
| 64 |
+
predictions = predictions[scores > conf_threshold, :]
|
| 65 |
+
scores = scores[scores > conf_threshold]
|
| 66 |
+
|
| 67 |
+
if len(scores) == 0:
|
| 68 |
+
return [], [], []
|
| 69 |
+
|
| 70 |
+
# Get the class with the highest confidence
|
| 71 |
+
class_ids = np.argmax(predictions[:, 4:], axis=1)
|
| 72 |
+
|
| 73 |
+
# Get bounding boxes for each object
|
| 74 |
+
boxes = self.extract_boxes(predictions)
|
| 75 |
+
|
| 76 |
+
return boxes, scores, class_ids
|
| 77 |
+
|
| 78 |
+
def extract_boxes(self, predictions):
|
| 79 |
+
# Extract boxes from predictions
|
| 80 |
+
boxes = predictions[:, :4]
|
| 81 |
+
|
| 82 |
+
# Scale boxes to original image dimensions
|
| 83 |
+
boxes = self.rescale_boxes(boxes)
|
| 84 |
+
|
| 85 |
+
# Convert boxes to xyxy format
|
| 86 |
+
#boxes = xywh2xyxy(boxes)
|
| 87 |
+
|
| 88 |
+
return boxes
|
| 89 |
+
|
| 90 |
+
def rescale_boxes(self, boxes):
|
| 91 |
+
# Rescale boxes to original image dimensions
|
| 92 |
+
input_shape = np.array(
|
| 93 |
+
[self.input_width, self.input_height, self.input_width, self.input_height]
|
| 94 |
+
)
|
| 95 |
+
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
| 96 |
+
boxes *= np.array(
|
| 97 |
+
[self.img_width, self.img_height, self.img_width, self.img_height]
|
| 98 |
+
)
|
| 99 |
+
return boxes
|
| 100 |
+
|
| 101 |
+
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
|
| 102 |
+
return draw_detections(
|
| 103 |
+
image, boxes, scores, class_ids, mask_alpha
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def get_input_details(self):
|
| 107 |
+
model_inputs = self.session.get_inputs()
|
| 108 |
+
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
| 109 |
+
|
| 110 |
+
self.input_shape = model_inputs[0].shape
|
| 111 |
+
self.input_height = self.input_shape[2]
|
| 112 |
+
self.input_width = self.input_shape[3]
|
| 113 |
+
|
| 114 |
+
def get_output_details(self):
|
| 115 |
+
model_outputs = self.session.get_outputs()
|
| 116 |
+
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
import requests
|
| 121 |
+
import tempfile
|
| 122 |
+
from huggingface_hub import hf_hub_download
|
| 123 |
+
|
| 124 |
+
model_file = hf_hub_download(
|
| 125 |
+
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
yolov8_detector = YOLOv10(model_file)
|
| 129 |
+
|
| 130 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
| 131 |
+
f.write(
|
| 132 |
+
requests.get(
|
| 133 |
+
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
|
| 134 |
+
).content
|
| 135 |
+
)
|
| 136 |
+
f.seek(0)
|
| 137 |
+
img = cv2.imread(f.name)
|
| 138 |
+
|
| 139 |
+
# # Detect Objects
|
| 140 |
+
combined_image = yolov8_detector.detect_objects(img)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Draw detections
|
| 144 |
+
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
| 145 |
+
cv2.imshow("Output", combined_image)
|
| 146 |
+
cv2.waitKey(0)
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
safetensors==0.4.3
|
| 2 |
opencv-python
|
|
|
|
| 3 |
https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/gradio-5.0.0b3-py3-none-any.whl
|
| 4 |
-
https://
|
| 5 |
-
|
|
|
|
| 1 |
safetensors==0.4.3
|
| 2 |
opencv-python
|
| 3 |
+
twilio
|
| 4 |
https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/gradio-5.0.0b3-py3-none-any.whl
|
| 5 |
+
https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/gradio_webrtc-0.0.1-py3-none-any.whl
|
| 6 |
+
onx-runtime
|
utils.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
|
| 4 |
+
class_names = [
|
| 5 |
+
"person",
|
| 6 |
+
"bicycle",
|
| 7 |
+
"car",
|
| 8 |
+
"motorcycle",
|
| 9 |
+
"airplane",
|
| 10 |
+
"bus",
|
| 11 |
+
"train",
|
| 12 |
+
"truck",
|
| 13 |
+
"boat",
|
| 14 |
+
"traffic light",
|
| 15 |
+
"fire hydrant",
|
| 16 |
+
"stop sign",
|
| 17 |
+
"parking meter",
|
| 18 |
+
"bench",
|
| 19 |
+
"bird",
|
| 20 |
+
"cat",
|
| 21 |
+
"dog",
|
| 22 |
+
"horse",
|
| 23 |
+
"sheep",
|
| 24 |
+
"cow",
|
| 25 |
+
"elephant",
|
| 26 |
+
"bear",
|
| 27 |
+
"zebra",
|
| 28 |
+
"giraffe",
|
| 29 |
+
"backpack",
|
| 30 |
+
"umbrella",
|
| 31 |
+
"handbag",
|
| 32 |
+
"tie",
|
| 33 |
+
"suitcase",
|
| 34 |
+
"frisbee",
|
| 35 |
+
"skis",
|
| 36 |
+
"snowboard",
|
| 37 |
+
"sports ball",
|
| 38 |
+
"kite",
|
| 39 |
+
"baseball bat",
|
| 40 |
+
"baseball glove",
|
| 41 |
+
"skateboard",
|
| 42 |
+
"surfboard",
|
| 43 |
+
"tennis racket",
|
| 44 |
+
"bottle",
|
| 45 |
+
"wine glass",
|
| 46 |
+
"cup",
|
| 47 |
+
"fork",
|
| 48 |
+
"knife",
|
| 49 |
+
"spoon",
|
| 50 |
+
"bowl",
|
| 51 |
+
"banana",
|
| 52 |
+
"apple",
|
| 53 |
+
"sandwich",
|
| 54 |
+
"orange",
|
| 55 |
+
"broccoli",
|
| 56 |
+
"carrot",
|
| 57 |
+
"hot dog",
|
| 58 |
+
"pizza",
|
| 59 |
+
"donut",
|
| 60 |
+
"cake",
|
| 61 |
+
"chair",
|
| 62 |
+
"couch",
|
| 63 |
+
"potted plant",
|
| 64 |
+
"bed",
|
| 65 |
+
"dining table",
|
| 66 |
+
"toilet",
|
| 67 |
+
"tv",
|
| 68 |
+
"laptop",
|
| 69 |
+
"mouse",
|
| 70 |
+
"remote",
|
| 71 |
+
"keyboard",
|
| 72 |
+
"cell phone",
|
| 73 |
+
"microwave",
|
| 74 |
+
"oven",
|
| 75 |
+
"toaster",
|
| 76 |
+
"sink",
|
| 77 |
+
"refrigerator",
|
| 78 |
+
"book",
|
| 79 |
+
"clock",
|
| 80 |
+
"vase",
|
| 81 |
+
"scissors",
|
| 82 |
+
"teddy bear",
|
| 83 |
+
"hair drier",
|
| 84 |
+
"toothbrush",
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Create a list of colors for each class where each color is a tuple of 3 integer values
|
| 88 |
+
rng = np.random.default_rng(3)
|
| 89 |
+
colors = rng.uniform(0, 255, size=(len(class_names), 3))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def nms(boxes, scores, iou_threshold):
|
| 93 |
+
# Sort by score
|
| 94 |
+
sorted_indices = np.argsort(scores)[::-1]
|
| 95 |
+
|
| 96 |
+
keep_boxes = []
|
| 97 |
+
while sorted_indices.size > 0:
|
| 98 |
+
# Pick the last box
|
| 99 |
+
box_id = sorted_indices[0]
|
| 100 |
+
keep_boxes.append(box_id)
|
| 101 |
+
|
| 102 |
+
# Compute IoU of the picked box with the rest
|
| 103 |
+
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
| 104 |
+
|
| 105 |
+
# Remove boxes with IoU over the threshold
|
| 106 |
+
keep_indices = np.where(ious < iou_threshold)[0]
|
| 107 |
+
|
| 108 |
+
# print(keep_indices.shape, sorted_indices.shape)
|
| 109 |
+
sorted_indices = sorted_indices[keep_indices + 1]
|
| 110 |
+
|
| 111 |
+
return keep_boxes
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def multiclass_nms(boxes, scores, class_ids, iou_threshold):
|
| 115 |
+
unique_class_ids = np.unique(class_ids)
|
| 116 |
+
|
| 117 |
+
keep_boxes = []
|
| 118 |
+
for class_id in unique_class_ids:
|
| 119 |
+
class_indices = np.where(class_ids == class_id)[0]
|
| 120 |
+
class_boxes = boxes[class_indices, :]
|
| 121 |
+
class_scores = scores[class_indices]
|
| 122 |
+
|
| 123 |
+
class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)
|
| 124 |
+
keep_boxes.extend(class_indices[class_keep_boxes])
|
| 125 |
+
|
| 126 |
+
return keep_boxes
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def compute_iou(box, boxes):
|
| 130 |
+
# Compute xmin, ymin, xmax, ymax for both boxes
|
| 131 |
+
xmin = np.maximum(box[0], boxes[:, 0])
|
| 132 |
+
ymin = np.maximum(box[1], boxes[:, 1])
|
| 133 |
+
xmax = np.minimum(box[2], boxes[:, 2])
|
| 134 |
+
ymax = np.minimum(box[3], boxes[:, 3])
|
| 135 |
+
|
| 136 |
+
# Compute intersection area
|
| 137 |
+
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
| 138 |
+
|
| 139 |
+
# Compute union area
|
| 140 |
+
box_area = (box[2] - box[0]) * (box[3] - box[1])
|
| 141 |
+
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
| 142 |
+
union_area = box_area + boxes_area - intersection_area
|
| 143 |
+
|
| 144 |
+
# Compute IoU
|
| 145 |
+
iou = intersection_area / union_area
|
| 146 |
+
|
| 147 |
+
return iou
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def xywh2xyxy(x):
|
| 151 |
+
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
|
| 152 |
+
y = np.copy(x)
|
| 153 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2
|
| 154 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2
|
| 155 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2
|
| 156 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2
|
| 157 |
+
return y
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):
|
| 161 |
+
det_img = image.copy()
|
| 162 |
+
|
| 163 |
+
img_height, img_width = image.shape[:2]
|
| 164 |
+
font_size = min([img_height, img_width]) * 0.0006
|
| 165 |
+
text_thickness = int(min([img_height, img_width]) * 0.001)
|
| 166 |
+
|
| 167 |
+
#det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)
|
| 168 |
+
|
| 169 |
+
# Draw bounding boxes and labels of detections
|
| 170 |
+
for class_id, box, score in zip(class_ids, boxes, scores):
|
| 171 |
+
color = colors[class_id]
|
| 172 |
+
|
| 173 |
+
draw_box(det_img, box, color)
|
| 174 |
+
|
| 175 |
+
label = class_names[class_id]
|
| 176 |
+
caption = f"{label} {int(score * 100)}%"
|
| 177 |
+
draw_text(det_img, caption, box, color, font_size, text_thickness)
|
| 178 |
+
|
| 179 |
+
return det_img
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def draw_box(
|
| 183 |
+
image: np.ndarray,
|
| 184 |
+
box: np.ndarray,
|
| 185 |
+
color: tuple[int, int, int] = (0, 0, 255),
|
| 186 |
+
thickness: int = 2,
|
| 187 |
+
) -> np.ndarray:
|
| 188 |
+
x1, y1, x2, y2 = box.astype(int)
|
| 189 |
+
return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def draw_text(
|
| 193 |
+
image: np.ndarray,
|
| 194 |
+
text: str,
|
| 195 |
+
box: np.ndarray,
|
| 196 |
+
color: tuple[int, int, int] = (0, 0, 255),
|
| 197 |
+
font_size: float = 0.001,
|
| 198 |
+
text_thickness: int = 2,
|
| 199 |
+
) -> np.ndarray:
|
| 200 |
+
x1, y1, x2, y2 = box.astype(int)
|
| 201 |
+
(tw, th), _ = cv2.getTextSize(
|
| 202 |
+
text=text,
|
| 203 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
| 204 |
+
fontScale=font_size,
|
| 205 |
+
thickness=text_thickness,
|
| 206 |
+
)
|
| 207 |
+
th = int(th * 1.2)
|
| 208 |
+
|
| 209 |
+
cv2.rectangle(image, (x1, y1), (x1 + tw, y1 - th), color, -1)
|
| 210 |
+
|
| 211 |
+
return cv2.putText(
|
| 212 |
+
image,
|
| 213 |
+
text,
|
| 214 |
+
(x1, y1),
|
| 215 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 216 |
+
font_size,
|
| 217 |
+
(255, 255, 255),
|
| 218 |
+
text_thickness,
|
| 219 |
+
cv2.LINE_AA,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def draw_masks(
|
| 224 |
+
image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3
|
| 225 |
+
) -> np.ndarray:
|
| 226 |
+
mask_img = image.copy()
|
| 227 |
+
|
| 228 |
+
# Draw bounding boxes and labels of detections
|
| 229 |
+
for box, class_id in zip(boxes, classes):
|
| 230 |
+
color = colors[class_id]
|
| 231 |
+
|
| 232 |
+
x1, y1, x2, y2 = box.astype(int)
|
| 233 |
+
|
| 234 |
+
# Draw fill rectangle in mask image
|
| 235 |
+
cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
|
| 236 |
+
|
| 237 |
+
return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
|