Spaces:
Running
on
Zero
Running
on
Zero
着手增加逻辑
Browse files
app.py
CHANGED
|
@@ -1,11 +1,20 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
import random
|
| 6 |
-
import
|
| 7 |
import utils
|
|
|
|
|
|
|
|
|
|
| 8 |
from diffusers.models import AutoencoderKL
|
|
|
|
|
|
|
|
|
|
| 9 |
from config import (
|
| 10 |
MODEL,
|
| 11 |
MIN_IMAGE_SIZE,
|
|
@@ -52,6 +61,37 @@ else:
|
|
| 52 |
pipe = None
|
| 53 |
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
@spaces.GPU
|
| 57 |
def generate(
|
|
@@ -70,23 +110,39 @@ def generate(
|
|
| 70 |
):
|
| 71 |
if randomize_seed:
|
| 72 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# negative_prompt=negative_prompt,
|
| 79 |
-
# guidance_scale=guidance_scale,
|
| 80 |
-
# num_inference_steps=num_inference_steps,
|
| 81 |
-
# width=width,
|
| 82 |
-
# height=height,
|
| 83 |
-
# generator=generator,
|
| 84 |
-
# ).images[0]
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
return None, seed
|
| 89 |
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
|
|
@@ -207,7 +263,7 @@ with gr.Blocks(css=custom_css).queue() as demo:
|
|
| 207 |
seed,randomize_seed,
|
| 208 |
guidance_scale,num_inference_steps
|
| 209 |
],
|
| 210 |
-
outputs=[result
|
| 211 |
)
|
| 212 |
|
| 213 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
+
import json
|
| 7 |
+
import spaces
|
| 8 |
import random
|
| 9 |
+
import config
|
| 10 |
import utils
|
| 11 |
+
import logging
|
| 12 |
+
from PIL import Image, PngImagePlugin
|
| 13 |
+
from datetime import datetime
|
| 14 |
from diffusers.models import AutoencoderKL
|
| 15 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
| 16 |
+
import time
|
| 17 |
+
from typing import List, Dict, Tuple, Optional
|
| 18 |
from config import (
|
| 19 |
MODEL,
|
| 20 |
MIN_IMAGE_SIZE,
|
|
|
|
| 61 |
pipe = None
|
| 62 |
|
| 63 |
|
| 64 |
+
class GenerationError(Exception):
|
| 65 |
+
"""Custom exception for generation errors"""
|
| 66 |
+
pass
|
| 67 |
+
|
| 68 |
+
def validate_prompt(prompt: str) -> str:
|
| 69 |
+
"""Validate and clean up the input prompt."""
|
| 70 |
+
if not isinstance(prompt, str):
|
| 71 |
+
raise GenerationError("Prompt must be a string")
|
| 72 |
+
try:
|
| 73 |
+
# Ensure proper UTF-8 encoding/decoding
|
| 74 |
+
prompt = prompt.encode('utf-8').decode('utf-8')
|
| 75 |
+
# Add space between ! and ,
|
| 76 |
+
prompt = prompt.replace("!,", "! ,")
|
| 77 |
+
except UnicodeError:
|
| 78 |
+
raise GenerationError("Invalid characters in prompt")
|
| 79 |
+
|
| 80 |
+
# Only check if the prompt is completely empty or only whitespace
|
| 81 |
+
if not prompt or prompt.isspace():
|
| 82 |
+
raise GenerationError("Prompt cannot be empty")
|
| 83 |
+
return prompt.strip()
|
| 84 |
+
|
| 85 |
+
def validate_dimensions(width: int, height: int) -> None:
|
| 86 |
+
"""Validate image dimensions."""
|
| 87 |
+
if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE:
|
| 88 |
+
raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
|
| 89 |
+
|
| 90 |
+
if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE:
|
| 91 |
+
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
|
| 96 |
@spaces.GPU
|
| 97 |
def generate(
|
|
|
|
| 110 |
):
|
| 111 |
if randomize_seed:
|
| 112 |
seed = random.randint(0, MAX_SEED)
|
| 113 |
+
|
| 114 |
+
"""Generate images based on the given parameters."""
|
| 115 |
+
start_time = time.time()
|
| 116 |
+
upscaler_pipe = None
|
| 117 |
+
backup_scheduler = None
|
| 118 |
|
| 119 |
+
try:
|
| 120 |
+
# Memory management
|
| 121 |
+
torch.cuda.empty_cache()
|
| 122 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
return None
|
| 125 |
+
except GenerationError as e:
|
| 126 |
+
logger.warning(f"Generation validation error: {str(e)}")
|
| 127 |
+
raise gr.Error(str(e))
|
| 128 |
+
except Exception as e:
|
| 129 |
+
logger.exception("Unexpected error during generation")
|
| 130 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 131 |
+
finally:
|
| 132 |
+
# Cleanup
|
| 133 |
+
torch.cuda.empty_cache()
|
| 134 |
+
gc.collect()
|
| 135 |
+
|
| 136 |
+
if upscaler_pipe is not None:
|
| 137 |
+
del upscaler_pipe
|
| 138 |
+
|
| 139 |
+
if backup_scheduler is not None and pipe is not None:
|
| 140 |
+
pipe.scheduler = backup_scheduler
|
| 141 |
+
|
| 142 |
+
utils.free_memory()
|
| 143 |
|
|
|
|
| 144 |
|
| 145 |
+
|
| 146 |
|
| 147 |
|
| 148 |
|
|
|
|
| 263 |
seed,randomize_seed,
|
| 264 |
guidance_scale,num_inference_steps
|
| 265 |
],
|
| 266 |
+
outputs=[result],
|
| 267 |
)
|
| 268 |
|
| 269 |
if __name__ == "__main__":
|